Mikroèlektronika

ISSN (print)0544-1269

Founders: Physico-Technical Institute of the Russian Academy of Sciences, Russian Academy of Sciences

Editor-in-Chief: Gennady Yakovlevich Krasnikov, Academician of the Russian Academy of Sciences, Doctor of Technical Sciences

Frequency / Access: 6 issues per year / Subscription

Indexation: White List (2nd level), Higher Attestation Commission List, RISC

Ағымдағы шығарылым

Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

Том 54, № 1 (2025)

Мұқаба

Бүкіл шығарылым

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

ЛИТОГРАФИЯ

Investigation of double patterning method with the usage of antispacer
Tikhonova E., Gornev E.
Аннотация

In this paper we review double lithography method with the usage of antispacer, which allows to form structures of critical layers with sub-193i lithographic dimensions that go beyond the single extreme ultraviolet lithography limits. We present a set of key parameters affecting the process productivity and a method for optimizing the lithographic process.

Mikroèlektronika. 2025;54(1):3-8
pages 3-8 views

МОДЕЛИРОВАНИЕ

Calculation of distributions of electron beam energy absorbed in PMMA and Si using various scattering models
Rogozhin A., Sidorov F.
Аннотация

This paper describes the simulation of electron beam scattering in polymethylmethacrylate (PMMA) and silicon (Si) using Monte Carlo method. The simulation used various scattering models, including both elastic and inelastic models, with and without secondary electron generation taken into account. For each material, three combinations of scattering models were tested in simulation. As a result, the distributions of absorbed energy and scattering events along the coordinate were obtained. The analysis of these results revealed the characteristic features of each scattering model.

Mikroèlektronika. 2025;54(1):9-18
pages 9-18 views
Exposure kinetics of a positive photoresist layer on an optically matched substrate
Kudrya V.
Аннотация

A number of works devoted to modeling the exposure process of a photoactive layer lying on an optically matched substrate is analyzed. The relationship between Dill's equations and previously obtained systems of equations is shown. Methods for reducing the system of two Dill's partial differential equations to ordinary differential equations, the accuracy of the numerical solution of which can be easily controlled, are considered sequentially. A procedure for using such equations to characterize the photochemical properties of positive photoresists is proposed.

Mikroèlektronika. 2025;54(1):19-25
pages 19-25 views
Influence of boundary conditions on transport in a quantum well
Romanov D., Kuznetsova I.
Аннотация

The problem of the electrical conductivity of a conducting channel at the boundary of a heterojunction or in a MD transistor is solved, considering the quantum theory of transfer processes. The thickness of the layer can be comparable to and less than the de Broglie wavelength of the charge carriers. The behavior of charge carriers is described by the quantum Liouville equation. The influence of surface scattering of charge carriers is considered through the Soffer boundary conditions. An expression for the electrical conductivity is obtained and its dependence on the strength of the transverse electric field and the roughness parameter of the boundary of the conducting channel with another semiconductor is analyzed. A comparative analysis of theoretical calculations with experimental data is carried out.

Mikroèlektronika. 2025;54(1):26-33
pages 26-33 views

NANOSTRUCTURES

Formation of nickel-based composite magnetic nanostructures for microelectronics and nanodiagnostics devices
Vorobyova A., Tishkevich D., Outkina E., Khodin A.
Аннотация

The article presents results of studying the formation processes of the composite material based on Ni nanostructures arrays – nanopillars or nanotubes embedded in thin porous anodic alumina by electrochemical deposition. Ni nanopillars were formed in the direct current mode (dc-deposition); nanotubes – in the alternating current mode (ac-deposition). Morphology analysis of these nanostructures shows that inner profile of the deposit and micromorphology of the nanostructure change with deposition duration and depend on the motion mode and diameter of hydrogen bubbles released under Ni electrodeposition. The morphology, structure, and electrochemical properties of the obtained composite materials were studied using scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, and the method of linear polarization in potentiodynamic mode. The obtained nanostructures can be used to fabricate planar electrodes for electrochemical biosensors and another nanodiagnostics and microelectronics devices

Mikroèlektronika. 2025;54(1):34-54
pages 34-54 views

ТЕХНОЛОГИИ

AZ nLOF series photoresist films on monocrystalline silicon
Brinkevich D., Grinyuk E., Prosolovich V., Zubova O., Kolos V., Brinkevich S., Vabishchevich S.
Аннотация

Films of negative photoresists (FR) AZ nLOF 2020, AZ nLOF 2070 and AZ nLOF 5510 with a thickness of 0.99–6.0 microns deposited on the surface of silicon wafers by centrifugation have been studied by the methods of microindentation and IR Fourier spectroscopy using a diffuse reflection module. It has been established that FR films behave like elastoplastic materials in which tensile elastic stresses are present. The most intense in the reflective absorption spectra of AZ nLOF photoresistive films are bands of valence vibrations of the aromatic ring (≈ 1500 cm–1), pulsation vibrations of the aromatic ring carbon skeleton (double maximum ≈ 1595 and 1610 cm–1), a wide structured band with several maxima in the range of 1050–1270 cm–1 and a band with a maximum of ≈ 1430 cm–1 due to vibrations of the benzene ring, associated with the CH2 bridge. It is shown that the line corresponding to the vibrations of the CH3 groups with a maximum at 2945 cm–1 is caused by the solvent. The differences in the FR spectra of AZ nLOF 2020 and AZ nLOF 2070 are associated with the presence of a residual solvent in the films and the interaction of its molecules with the aromatic rings of the main FR component – phenol-formaldehyde.

Mikroèlektronika. 2025;54(1):55–63
pages 55–63 views
Study of deposition modes of Cu2O films by RF magnetron sputtering for application in solar cell structures
Saenko A., Zheits V., Vakulov Z., Smirnov V.
Аннотация

The deposition of Cu2O films was carried out by radio-frequency (RF) magnetron sputtering in an oxygen-free environment at room temperature. The effect of the power and pressure in the chamber on the deposition rate, structural and optical properties of Cu2O films was studied. It was shown that the dependence of the Cu2O film deposition rate on the sputtering power is almost linear and increases slightly with increasing argon pressure in the chamber. It was found that all Cu2O films have a predominantly nanocrystalline structure consisting of columnar grains, the average size of which increases from 10 to 30 nm with an increase in the sputtering power from 25 to 100 W and in the chamber pressure from 3·10–3 to 7·10–3 mbar. At the same time, the Cu2O films have a relatively smooth surface with an average roughness in the range from 4.5 to 5.9 nm. It has been established that the optimal sputtering power for deposition of Cu2O films with the largest grain size and low surface roughness is 75 W and chamber pressure of 5·10–3 mbar. It has been shown that under this magnetron sputtering mode, the Cu2O film has two main diffraction peaks, which correspond to the orientations of the crystal planes (111) and (200) for the cubic Cu2O phase, as well as high optical absorption of up to about 600 nm and a band gap of 2.18 eV. The models of solar cells based on the ZnO/Cu2O heterojunction were manufactured by magnetron sputtering at room temperature and their current-voltage characteristics were studied. The obtained results can be used in the development of structures and technological processes for the formation of solar cells on glass and flexible substrates using the magnetron sputtering method.

Mikroèlektronika. 2025;54(1):64-75
pages 64-75 views
Development of atomic layer deposition technological platform for the synthesis of micro- and nanoelectronics materials
Amashaev R., Isubgadzhiev S., Rabadanov M., Abdulagatov I.
Аннотация

This work presents the results of designing, constructing and testing the atomic layer deposition (ALD) platform for the synthesis of various semiconductor, dielectric, metallized and barrier thin-film structures with a thickness of < 100 nm. This ALD platform can be used in the field of micro- and nanoelectronics, with the possibility of in situ monitoring of mass and thickness growth processes with an accuracy of 0.3 ng/cm2 and 0.037 Å/cycle, respectively. In this ALD platform, the number of imported components is minimized due to the use of electronics and vacuum fittings from domestic manufacturers, which in turn will significantly reduce the cost of this type of installation and make atomic layer deposition technology available to most scientific and educational organizations in Russia.

Mikroèlektronika. 2025;54(1):76-90
pages 76-90 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».