On the correctness of the model description of the plasma composition in the mixture of SF 6 + He + O 2
- Authors: Myakonkikh A.V.1, Kuzmenko V.O.1, Efremov A.M.1,2, Rudenko K.V.1
-
Affiliations:
- NRC “Kurchatov Institute” – K.A. Valiev IPT
- JSC “Molecular Electronics Research Institute”
- Issue: Vol 54, No 5 (2025)
- Pages: 381-392
- Section: МОДЕЛИРОВАНИЕ
- URL: https://journals.rcsi.science/0544-1269/article/view/353908
- DOI: https://doi.org/10.7868/S3034548025050047
- ID: 353908
Cite item
Abstract
Keywords
About the authors
A. V. Myakonkikh
NRC “Kurchatov Institute” – K.A. Valiev IPT
Email: miakonkikh@ftian.ru
Moscow, Russia
V. O. Kuzmenko
NRC “Kurchatov Institute” – K.A. Valiev IPTMoscow, Russia
A. M. Efremov
NRC “Kurchatov Institute” – K.A. Valiev IPT; JSC “Molecular Electronics Research Institute”Moscow, Russia; Zelenograd, Russia
K. V. Rudenko
NRC “Kurchatov Institute” – K.A. Valiev IPTMoscow, Russia
References
- Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. Volume 1. Process Technology, New York: Lattice Press, 2000. 416 p., ISBN: 9780961672164
- Nojiri K. Dry etching technology for semiconductors, Tokyo: Springer International Publishing, 2015. 116 p., ISBN: 9783319102948
- Krasnikov G.Ya. The capabilities of microelectronic processes with 5 nm critical dimension and less (in Russian) // Nanoindustry. 2020. V. 13. No. S5-1(102). P. 13–19. https://doi.org/10.22184/1993-8578.2020.13.5s.13.19
- Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing, New York: John Wiley & Sons Inc., 2005. 757 p. ISBN: 9780471724247.
- Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S., Dalton T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // Journal of Vacuum Science & Technology A. 2004. V. 22. P. 53–60 . https://doi.org/10.1116/1.1626642
- Kastenmeier B.E.E., Matsuo P.J., Oehrlein G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide // Journal of Vacuum Science & Technology A. 1999. V. 17. P. 3179 . https://doi.org/10.1116/1.582097
- Schaepkens M., Standaert T.E.F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J.M. Study of the SiO 2 -to-Si 3 N 4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO 2 -to-Si mechanism // Journal of Vacuum Science & Technology A. 1999. V. 17. P. 26–37.https://doi.org/10.1116/1.582108
- Yoon S.F. Dry etching of thermal SiO 2 using SF 6 -based plasma for VLSI fabrication // Microelectronic Engineering. 1991. V. 14. P. 23–40. https://doi.org/10.1016/0167-9317(91)90164-9
- Arora P., Nguyen T., Chawla A., Nam S.-K., Donnelly V.M. Role of sulfur in catalyzing fluorine atom fast etching of silicon with smooth surface morphology // Journal of Vacuum Science & Technology A. 2019. V. 37. P. 061303. https://doi.org/10.1116/1.5125266
- Han G., Murata Y., Minami Y., Sohgawa M., Abe T. Thermal Reactive Ion Etching of Minor Metals with SF 6 Plasma // Sensors and Materials. 2017. V. 29. P. 217–223. https://doi.org/10.18494/SAM.2017.1444
- Park J. H., Lee N.-E., Lee J., Park J.S., Park H.D. Deep dry etching of borosilicate glass using SF 6 and SF 6 /Ar inductively coupled plasmas // Microelectronic Engineering. 2005. V. 82. p. 119 . https://doi.org/10.1016/j.mee.2005.07.006
- Osipov A.A., Aleksandrov S.E., Solov’ev Yu.V., Uva - rov A.A., Osipov A.A. Etching of SiC in Low Power Inductively-Coupled Plasma // Russian Microelectronics. 2018. V. 47. No. 6. P. 427–433 . https://doi.org/10.1134/S1063739719010074
- Oehrlein G.S. et al. Future of plasma etching for microelectronics: Challenges and opportunities // Journal of Vacuum Science & Technology B. 2024. V. 42. P. 041501. https://doi.org/10.1116/6.0003579
- Osipov A.A., Iankevich G.A., Berezenko V.I, Endiiarova E.V. Influence of operation parameters on BOSCH-process technological characteristics // Materials Today: Proceedings. 2020. V. 30. P. 599. https://doi.org/10.1016/j.matpr.2020.01.412
- Dussart R., Tillocher T., Lefaucheux P., Boufnichel M. Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies // Journal of Physics D: Applied Physics. 2014. V. 47. p. 123001 . https://doi.org/10.1088/0022-3727/47/12/123001
- Kokkoris G., Panagiotopoulos A., Goodyear A., Cooke M., Gogolides E. A global model for SF 6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls // Journal of Physics D: Applied Physics. 2009. V. 42, P. 055209. https://doi.org/10.1088/0022-3727/42/5/055209
- Haidar Y., Pateau A., Rhallabi A., Fernandez M.C., Mokrani A., Taher F., Roqueta F., Boufnichel M . SF 6 and C 4 F 8 global kinetic models coupled to sheath models // Plasma Sources Science and Technology. 2014. V. 23. P. 065037. https://doi.org/ 10.1088/0963-0252/23/6/065037
- Myakonkikh A.V., Kuzmenko V.O., Efremov A.M., Rudenko K.V. Gas Phase Composition and Kinetics of Fluorine Atoms in SF 6 Plasma // Russian Microelectronics. 2024. V. 53. P. 582–591. https://doi.org/10.1134/S106373972460064X
- Mao M., Wang Y.N., Bogaerts A. Numerical study of the plasma chemistry in inductively coupled SF 6 and SF 6 /Ar plasmas used for deep silicon etching applications // Journal of Physics D: Applied Physics. 2011. V. 44. p. 435202. https://doi.org/10.1088/0022-3727/44/43/435202
- Lallement L., Rhallabi A., Cardinaud C., Peignon-Fernandez M.C., Alves L. L. Global model and diagnostic of a low-pressure SF 6 /Ar inductively coupled plasmа // Plasma Sources Science and Technology. 2009. V. 18. P. 025001. https://doi.org/10.1088/0963-0252/18/2/025001
- Yang W., Zhao S.-X., Wen D.-Q., Liu W., Liu Y.-X., Li X.-C., Wang Y.-N. F-atom kinetics in SF 6 /Ar inductively coupled plasmas // Journal of Vacuum Science & Technology A. 2016. V. 34, P. 031305. https://doi.org/10.1116/1.4945003
- Ryan K.R., Plumb I.C. A model for the etching of silicon in SF 6 /O 2 plasmas // Plasma Chemistry and Plasma Processing. 1990. V. 10. No. 2. P. 207–229. https://doi.org/10.1007/BF01447127
- Pateau A., Rhallabi A., Fernandez M.-C., Boufnichel M., Roqueta F. Modeling of inductively coupled plasma SF 6 /O 2 /Ar plasma discharge: Effect of O 2 on the plasma kinetic properties // Journal of Vacuum Science & Technology A. 2014. V. 32. P. 021303. https://doi.org/10.1116/1.4853675
- Efremov A., Lee J., Kim J. On the control of plasma parameters and active species kinetics in CF 4 +O 2 +Ar gas mixture by CF 4 /O 2 and O 2 /Ar mixing ratios // Plasma Chemistry and Plasma Processing. 2017. V. 37. P. 1445–1462 . https://doi.org/10.1007/s11090-017-9820-z
- Efremov A., Lee B.J., Kwon K.-H. On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO 2 and Si x N y ) in multi-component fluorocarbon gas mixtures // Materials. 2021. V. 14, P. 1432. https://doi.org/10.3390/ma14061432
- Miakonkikh A., Kuzmenko V., Efremov A., Rudenko K. Parameters and composition of plasma in a CF 4 + H 2 + + Ar gas mixture: Effect of CF 4 /H 2 ratio // Russian Microelectronics. 2024. V. 53. P. 70–78. https://doi.org/10.1134/S1063739723600012
- Miakonkikh A., Kuzmenko V., Efremov A., Rudenko K. On Relationships between Gas-Phase and Heterogeneous Process Kinetics in CF 4 + H 2 + Ar Plasma // Vacuum. 2025. V. 234. P. 114044. https://doi.org/10.1016/j.vacuum.2025.114044
- Shun’ko E.V. Langmuir probe in theory and practice. Universal Publishers, Boca Raton. 2008. 245 p., ISBN: 9781599429359 .
- Engeln R., Klarenaar B., Guaitella O. Foundations of optical diagnostics in low-temperature plasmas // Plasma Sources Science and Technology. 2020. V. 29. P. 063001. https://doi.org/10.1088/1361-6595/ab6880
- Lopaev D.V., Volynets A.V., Zyryanov S.M., Zotovich A.I., Rakhimov A.T. Actinometry of O, N and F atoms // Journal of Physics D: Applied Physics. 2017. V. 50. P. 075202. https://doi.org/10.1088/1361-6463/50/7/075202
- Raju G.G. Gaseous electronics. Tables, Atoms and Molecules. CRC Press, Boca Raton. 2012. 790 p. ISBN: 9781315217437 .
- Christophorou L.G., Olthoff J.K. Fundamental electron interactions with plasma processing gases, New York: Springer Science+Business Media LLC, 2004. 776 p. ISBN: 9781461347415 .
- Cunge G., Ramos R., Vempaire D., Touzeau M., Neijbauer M., Sadeghi N. Gas temperature measurement in CF 4 , SF 6 , O 2 , Cl 2 , and HBr inductively coupled plasmas // Journal of Vacuum Science & Technology. 2009. V. 27. P. 471. https://doi.org/10.1116/1.3106626
- Handbook of chemistry and physics, Boca Raton: CRC press, 1998. ISBN: 9780849304798
- Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O 2 and Ar/O 2 /Cl 2 inductively coupled plasmas // Journal of Physics D: Applied Physics. 2006. V. 39. No. 15. P. 3272–3284. https://doi.org/10.1088/0022-3727/39/15/009
- Lee C., Lieberman M.A. Global model of Ar, O 2 , Cl 2 , and Ar/O 2 high-density plasma discharges // Journal of Vacuum Science & Technology A. 1995. V. 13. P. 368–380. https://doi.org/10.1116/1.579366
- Kota G.P., Coburn J.W., Graves D.B. Heterogeneous recombination of atomic bromine and fluorine // Journal of Vacuum Science & Technology A. 1999. V. 17. P. 282. https://doi.org/10.1116/1.581582
- Chantry P.J. A simple formula for diffusion calculations involving wall reflection and low density // Journal of Physics. 1987. V. 62. P. 1141. https://doi.org/10.1063/1.339662
Supplementary files

