Complementary studies of aluminum thin films: resistivity and real structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of comprehensive studies on the temperature dependence of the electrical resistance of thin magnetron Al films, examining their structural characteristics, including morphology, surface roughness, microstructure, and density. To establish a fundamental relationship between the specific resistance and structural features of the films, they were deposited on standard Si(111) substrates in a two-stage growth mode with the formation of homobuffer layers in the temperature range from 293 to 800 K. Structural characterization of the samples was performed using scanning force and electron microscopy, X-ray diffractometry and X-ray reflectometry. It is demonstrated that the value and temperature dependence of the specific resistance of aluminium films can be altered by varying the growth conditions of the homobuffer layer, enabling the deposition of films with different density profiles across their thickness. The magnetron 120-nm aluminium film on a 700 K homobuffer layer with a constant density of 2.66 g/cm 3 is found to have a specific resistance of ρ RT = 2.69 μOhm  cm and T c = 1.22 K. Al films with variable density exhibited a residual resistivity of 30 μΩ · cm. The primary contribution to the resistance of such films is made by intergranular regions with lower density. These regions are reliably detected by the X-ray reflectometry technique.

About the authors

A. A. Lomov

NRC “Kurchatov Institute”

Email: andlomov@ftian.ru
Moscow, Russia

M. A. Tarasov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Moscow, Russia

K. D. Shcherbachev

NUST MISIS University of Science and Technology

Moscow, Russia

A. A. Tatarintsev

NRC “Kurchatov Institute”

Moscow, Russia

A. M. Chekushkin

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Moscow, Russia

References

  1. Wang H., Blaabjerg F. Reliability of capacitors for DC-link applications in power electronic converters-An overview // IEEE Transactions on industry Applications. 2014. V. 50. No 5. P. 3569–3578. https://doi.org/10.1109/TIA.2014.2308357
  2. Drozdov M.N., Drozdov Y.N., Chkhalo N.I., Polkovnikov V.N., Yunin P.A., Chirkin M.V., Tolstogouzov A. Time-of-flight secondary ion mass spectrometry study on Be/Al-based multilayer interferential structures // Thin Solid Films. 2018. V. 661. P. 65–70. https://doi.org/10.1016/j.tsf.2018.07.013
  3. Dubey A., Mishra R., Hsieh Y.H., Cheng C.W., Wu B.H., Chen L.J., Yen T.J. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth // Advanced Science. 2020. V. 7. No 24. P. 2002274. https://doi.org/10.1002/advs.202002274
  4. Earnest C.T., Béjanin J.H., McConkey T.G., Peters E.A., Korinek A., Yuan H., Mariantoni M. Substrate surface engineering for high-quality silicon/aluminum superconducting resonators // Superconductor Science and Technology. 2018. V. 31. No 12. P. 125013. https://doi.org/10.1088/1361-6668/aae548
  5. Clarke J., Braginski A.I. The SQUID Handbook—Vol. 1 Fundamentals and Technology of SQUIDS and SQUID Systems. Wiley-VCH. Cambridge 409, 2002, ISBN: 9783527402298.
  6. Mantegazzini F., Ahrens F., Borghesi M., Falferi P., Fasolo L., Faverzani M., Giachero A. High kinetic inductance NbTiN films for quantum limited travelling wave parametric amplifiers // Physica Scripta. 2023. V. 98. No 12. P. 125921. https://doi.org/10.1088/1402-4896/ad070d
  7. Khukhareva I.S. The superconducting properties of thin aluminum films // Soviet Physics JETP. 1963. V. 16. No 4. P. 828–832.
  8. Tarasov M., Gunbina A., Fominsky M., Chekushkin A., Vdovin V., Koshelets V., Edelman V. Fabrication of NIS and SIS nanojunctions with aluminum electrodes and studies of magnetic field influence on IV curves // Electronics. 2021. V. 10. No 23. P. 2894. https://doi.org/10.3390/electronics10232894
  9. Yeh C.C., Do T.H., Liao P.C., Hsu C.H., Tu Y. H., Lin H., Liang C.T. Doubling the superconducting transition temperature of ultraclean wafer-scale aluminum nanofilms // Physical Review Materials. 2023. V. 7. No 11. P. 114801, https://doi.org/oi:10.1103/PhysRevMaterials.7.114801
  10. Yong Ju Lee, Sang-Won Kang Study on the characteristics of aluminum thin films prepared by atomic layer deposition // J. Vac. Sci. Technol. 2002. V. A 20. No 6. P. 183–188. https://doi.org/10.1116/1.1513636
  11. Buckel W., Kleiner R. Superconductivity: fundamentals and applications. John Wiley & Sons. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim xiv, 461, 2008, ISBN: 9783527403493
  12. Wu W., Brongersma S.H., Van Hove M., Maex K. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions // Applied physics letters. 2004. V. 84. No 15. P. 2838–2840. https://doi.org/10.1063/1.1703844
  13. Munoz R.C., Arenas C. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces // Applied Physics Reviews. 2017. V. 4. No 1. P. 011102. https://doi.org/10.1063/1.4974032
  14. Thomson J.J. On the theory of electric conduction through thin metallic films // Proc. Camb. Philos. Soc. 1901. V. 11. P. 120.
  15. Kamerlingh-Onnes H. Proc. K. Akad. 1906. V. 9. P. 459. (Comm. Phys. Lab. Leiden 96) Suppl. No. 34 (1913).
  16. Fuchs K. The conductivity of thin metallic films according to the electron theory of metals // Mathematical Proceedings of the Cambridge Philosophical Society. 1938. V. 34. P. 100–108. https://doi.org/10.1017/S0305004100019952
  17. Sondheimer E.H. The mean free path of electrons in metals // Advances in physics. 2001. V. 50. No 6. P. 499–537. https://doi.org/10.1080/00018730110102187
  18. Mayadas A.F., Shatzkes M., Janak J.F. Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces // Applied Physics Letters. 1969. V. 14. No 11. P. 345–347. https://doi.org/10.1063/1.1652680
  19. Mayadas A.F., Shatzkes M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces // Physical review B. 1970. V. 1. No 4. P. 1382–1389. https://doi.org/10.1103/PhysRevB.1.1382
  20. Pyataikin I.I. Influence of the grain size effect on the coefficients of reflection, transmission, and absorption of microwaves by polycrystalline metal films // Journal of Radio Electronics. 2020. V. 10. P. 1–29. https://doi.org/10.30898/1684-1719.2020.10.5
  21. Zhang W., Brongersma S.H., Richard O., Brijs B., Palmans R., Froyen L., Maex K. Influence of the electron mean free path on the resistivity of thin metal films // Microelectronic engineering. 2004. V. 76. No 1–4. P. 146–152. https://doi.org/10.1016/j.mee.2004.07.041
  22. Bakonyi I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu // The European Physical Journal Plus. 2021. V. 136. No 4. P. 410. https://doi.org/10.1140/epjp/s13360-021-01303-4
  23. Chubov P.N., Eremenko V.V., Pilipenko Y.A. Dependence of the critical temperature and energy gap on the thickness of superconducting aluminum films // Sov. Phys. JETP. 1969. V. 28. No 3. P. 389–395.
  24. Pettit R.B., Silcox J. Film structure and enhanced superconductivity in evaporated aluminum films // Phys. Rev. B. 1976. V. 13. No 7. P. 2865–2872. https://doi.org/10.1103/PhysRevB.13.2865
  25. Amirov I.I., Selyukov R.V., Naumov V.V., Gorlachev E.S. Influence of Deposition Conditions and Ion-Plasma Treatment of Thin Cobalt Films on Their Electrical Resistivity // Rus. Microelect. 2021. V. 50. No 1. P. 1–7. https://doi.org/10.1134/S1063739721010030
  26. Parratt L.G. Surface studies of solids by total reflection of X-rays // Phys. Rev. 1954. V. 95. No 2. P. 359. https://doi.org/10.1103/PHYSREV.95.359
  27. Kiessig H. Interferenz von Röntgenstrahlen an dünnen Schichten // Annalen der Physik. 1931. V. 402. No 7. P. 769–788.
  28. Holý V., Pietsch U., Baumbach T. High-resolution X-ray scattering from thin films and multilayers. V. 149. Springer-Verlag, Berlin, Heidelberg, 1999
  29. Lomov A.A., Zakharov D.M., Tarasov M.A., Chekushkin A.M., Tatarintsev A.A., Kiselev D.A., Seleznev A.E. Influence of the homobuffer layer on the morphology, microstructure, and hardness of Al/Si (111) films // Technical Physics. 2023. V. 68. No 7. P. 833–842. https://doi.org/10.61011/TP.2023.07.56624.83-23
  30. Wormington M., Panaccione C., Matney K.M., Bowen D.K. Characterization of structures from X-ray scattering data using genetic algorithms // Phil. Trans. Royal Soc. A: Mathematical, Physical and Engineering Sciences. 1999. V. 357. No 1761. P. 2827–2848. https://doi.org/10.1098/rsta.1999.0469
  31. Aswal D.K., Joshi N., Debnath A.K., Gupta S.K., Vuillaume D., Yakhmi J.V. Thickness dependent morphology and resistivity of ultra - thin Al films grown on Si (111) by molecular beam epitaxy // Phys. Stat. Sol (a). 2006. V. 203. No 6. P. 1254–1258. https://doi.org/10.1002/pssa.200566102
  32. Sedov E.A. Issledovanie kriticheskoi temperatury sverkhprovodiashchego perekhoda tonkikh plenok aliumi niia // Diss. Kand. Tekhn. nauk. VSHE. Moskva 2024 g. 124 str. (in Russ.)
  33. Desai P.D., James H.M., Ho C.Y. Electrical resistivity of aluminum and manganese // J. Phys and Chem Ref. Data. 1984. V. 13. No 4. P. 1131–1172. https://doi.org/10.1063/1.555725
  34. Samsonov G.V. Handbook of the Physicochemical Properties of the Elements. Springer Science & Business Media 2012. A subsidiary of Plenum Publishing Corporation: Springer New-York-Washington 1968. https://doi.org/10.1007/978-1-4684-6066-7
  35. Nečas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis // Open Physics 2012. V. 10. No 1. P. 181–188. https://doi.org/10.2478/s11534-011-0096-2
  36. Horcas I., Fernández R., Gomez-Rodriguez J.M., Colchero J., Gómez-Herrero J., Baro A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology // Rev. Scien. Instr. 2007. V. 78. No 1. P. 013705. https://doi.org/10.1063/1.2432410.
  37. Shvartsman V.V., Kholkin A.L. Evolution of nanodomains in 0.9 PbMg 1/3 Nb 2/3 O 3–0.1 PbTiO 3 single crystals // J. Appl. Phys. 2007. V. 101. P. 064108. https://doi.org/10.1063/1.2713084
  38. Lomov A.A., Zakharov D.M., Tarasov M.A., Chekushkin A.M., Tatarintsev A.A., Vasiliev A.L. Al Islands on Si (111): Growth Temperature, Morphology, and Strain // Rus. Microelect. 2024. V. 53. No 4. P. 339–348. https://doi.org/10.1134/S1063739724600468
  39. Croce P., Névot L. Étude des couches minces et des surfaces par réflexion rasante, spéculaire ou diffuse, de rayons X. // Rev. Phys. Appl. 1976. V. 11. No 1. P. 113–125. https://doi.org/10.1051/rphysap:01976001101011300
  40. Artioukov I.A., Asadchikov V.E., Kozhevnikov I.V. Effects of a near-surface transition layer on X-ray reflection and scattering // J. X-Ray Sci. Techn. 1996. V. 6. No 3. P. 223–243. https://doi.org/10.3233/XST-1996-6301
  41. Afanas’ev A.M., Chuev M.A., Imamov R.M., Lomov A.A., Mokerov V.G., Fedorov Y.V., Guk A.V. Study of multilayer GaAs-In x Ga 1– x As layers-based structure by double-crystal x-ray diffractometry // Kristallog. 1997. V. 42. No 3. P. 514–523. (in rus).
  42. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992). Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press. UK 994, 1996, ISBN: 9780521431088.
  43. Dobierzewska-Mozrzymas E., Warkusz F. Size effects in epitaxial aluminium films // Thin Solid Films 1977. V. 43. No 3. P. 267–273. https://doi.org/10.1016/0040-6090(77)90288-7
  44. Ashcroft N.W., Mermin N.D. Solid State physics, WB Saunders, Philadephia, 1976, ISBN: 9780030839931.
  45. Birkholz M. Thin film analysis by X-ray scattering // John Wiley & Sons. Weinheim: Wiley–VCH. 378, 2006, ISBN:9783527310524. https://doi.org/10.1002/3527607595

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).