On the influence of various oxygen-containing gases on composition of trifluoromethane plasma

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The model-based study of plasma composition in respect to neutral species in CHF 3 + O 2 , CHF 3 + СO и CHF 3 + СO 2 mixtures under the condition of inductive 13.56 MHz discharge at constant gas pressure (6 mTorr) and input power (700 W) was carried out. It was found that effects produced by additions of CO and CO 2 are sufficiently different compared with a “classical” case of CHF 3 + O 2 plasma, where an increase of plasma chemical activity as well as a rapid decrease in polymerization ability take place. The reasonability of obtained data was confirmed by the satisfactory agreement between model-predicted densities of fluorine atoms and their counterparts measured by optical emission actinometry.

Sobre autores

A. Efremov

Molecular Electronics Research Institute; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Email: amefremov@mail.ru
Zelenorgad, Moscow, Russia; Moscow, Russia

E. Koryakova

Molecular Electronics Research Institute

Zelenorgad, Moscow, Russia

V. Betelin

Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Moscow, Russia

K. Kwon

Korea University

Chochiwon, Korea

Bibliografia

  1. Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press, New York, 2000. 416 p.
  2. Rooth J.R. Industrial Plasma Engineering. IOP Publishing LTD. Philadelphia. 2001. 658 p.
  3. Valeev A.S., Krasnikov G. Y . Manufacturing technology of intra- and interchip interconnects for modern ULSIs: Review and concepts of development // Russian Microelectronics, 2015. Vol. 44. No. 3. pp. 18 0–201.
  4. Lieberman M.A., Lichtenberg A.J . Principles of plasma discharges and materials processing. John Wiley & Sons Inc., New York, 1994. 757 p.
  5. Roosmalen A.J., Baggerman J.A.G. and Brad er S.J.H . Dry etching for VLSI. Plenum Press, New-York, 1991. 490 p.
  6. Coburn J.W., Kay E . Some chemical aspects of the fluorocarbon plasma etching of silicon and its compounds // IBM Journal of Research and Development . 1979. Vol. 23. No. 1. pp. 33–41.
  7. Proshina O., Rakhimova T.V., Zotov ich A . et al . Multifold study of volume plasma chemistry in Ar/CF 4 and Ar/CHF 3 CCP discharges // Plasma Sources Sci. Technol ., 2017. Vol. 26. P. 075005.
  8. Efremov A.M., Murin D.B., Kwon K.-H . Features of the Kinetics of Bulk and Heterogeneous Processes in CHF 3 + Ar and C 4 F 8 + Ar Plasma Mixtures // Russian Microelectronics, 2019. Vol. 48. No. 2. pp. 119 –127.
  9. Efremov A.M., Murin D.B. , Kwon K.-H . Concerning the Effect of Type of Fluorocarbon Gas on the Output Characteristics of the Reactive-Ion Etching Process // Russian Microelectronics, 2020. Vol. 49. No. 3. pp. 157–165.
  10. Efremov A., Lee B.J., Kwon K.-H ., On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO 2 and Si x N y ) in multi-component fluorocarbon gas mixtures // Materials, 2021. Vol. 14. pp. 1432(1–27).
  11. Baek S.Y., Efremov A., Bobyl ev A. et al . On relationships between plasma chemistry and surface reaction kinetics providing the etching of silicon in CF 4 , CHF 3 , and C 4 F 8 gases mixed with oxygen // Materials, 2023. Vol. 16. pp. 5043(1–18).
  12. Efremov A.M., Bashmakova D .E., Kwon K.-H . Features of plasma composition and fluorine atom kinetics in CHF 3 + O 2 gas mixture. // [ Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol . ] ChemChemTech . 2023. Vol. 66. No. 1. pp. 48–55.
  13. Shun’ko E.V . Langmuir probe in theory and practice. Universal Publishers. Boca Raton. 2008. 245 p.
  14. Engeln R., Klarenaar B., Guaitella O ., Foundations of optical diagnostics in low-temperature plasmas // Plasma Sources Sci. Technol . , 2020. Vol. 29. pp. 063001(1–14).
  15. Lopaev D.V., Volyne ts A.V., Zyryanov S.M., Zotovich A.I., Rakhimov A. T . Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys . , 2017. Vol. 50. pp. 075202(1 –17).
  16. Ho P., Johannes J.E ., Buss R.J . Modeling the plasma chemistry of C 2 F 6 and CHF 3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data // J. Vac. Sci. Technol. A . 2001. Vol. 19. pp. 2344–2367.
  17. Hsu C.C., Nierode M.A ., Coburn J.W., Graves D.B . Comparison of model and experiment for Ar, Ar/O 2 and Ar/O 2 /Cl 2 inductively coupled plasmas // J. Phys. D Appl. Phys . 2006. Vol. 39. No. 15. pp. 3272–3284.
  18. Raju G.G . Gaseous electronics. Tables, Atoms and Molecules. CRC Press, Boca Raton. 2012. 790 p.
  19. Christophorou L.G., Olthoff J.K . Fundamental electron interactions with plasma processing gases. Springer Science+Business Media LLC, New York. 2004. 776 p.
  20. Ling L., Hua X., Li X. et al . Study of C 4 F 8 /CO and C 4 F 8 /Ar/CO plasmas for highly selective etching of organosilicate glass over Si 3 N 4 and SiC // J. Vac. Sci. Technol. A, 2004. Vol. 22. No. 2. pp. 236–244.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).