Method for testing the radiation resistance of semiconductor electronic materials in an electron microscope

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is considered the possibility of using electron irradiation to simulate gamma irradiation. This paper presents a method for calculating the absorbed energy of electrons in various materials across a wide range of atomic numbers, as well as converting this energy into an absorbed dose equivalent to the kerma of gamma radiation. The main parameters of the presented model are the effective atomic number of the target (Z eff), its density (ρ), and the electron energy ( E 0 ). To convert the absorbed dose, it is also necessary to consider the electron flux (F) and the thickness of the investigated layer. The results of electron irradiation with energies of several keV and gamma irradiation are compared. The paper discusses the specifics of radiation effects on modern high-k dielectric materials and considers the limitations and modifications of the existing testing methods for microelectronic structures, including the need to consider multilayer structures and the decrease in electron flux with increasing sample depth.

About the authors

V. A. Kiselevskiy

National Research Center “Kurchatov Institute” – K.A. Valiev Institute of Physics and Technology

Email: sevakiselevskiy@yandex.ru
Moscow, Russia

A. A. Tatarintsev

National Research Center “Kurchatov Institute” – K.A. Valiev Institute of Physics and Technology

Email: tatarintsev@ftian.ru
Moscow, Russia

References

  1. Belousov A.I., Solodukha V.A., Shvedov S.V. Kosmicheskaia elektronika, 2015. (in Russ.)
  2. Andreev D.V., Bondarenko G.G., Andreev V.V. Change in the Charge State of MOS Structures with a Radiation-Induced Charge under High-Field Injection of Electrons. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 2023, V. 1, p. 55–60. https://doi.org/10.31857/s1028096023010053
  3. Kumar J., Birla S., Agarwal G. A review on effect of various high-k dielectric materials on the performance of FinFET device, Mater. Today Proc. 79 (2023) 297–302. https://doi.org/10.1016/j.matpr.2022.11.204
  4. Zhang W., Wang G., Tang M., Cui L., Wang T., Su P., Chen Z., Long X., Xiao Y., Yan S. Impact of Radiation Effect on Ferroelectric Al-Doped HfO 2 Metal-Ferroelectric- Insulator-Semiconductor Structure, IEEE Access. 8 (2020) 108121–108126. https://doi.org/10.1109/ACCESS.2020.3000865
  5. Zhang W., Li G., Long X., Cui L., Tang M., Xiao Y., Yan S., Li Y., Zhao W. A Comparative Study of the γ-Ray Radiation Effect on Zr-Doped and Al-Doped HfO 2 -Based Ferroelectric Memory, Phys. Status Solidi Basic Res. 257 (2020) 2–7. https://doi.org/10.1002/pssb.201900736
  6. Galloway K.F., Roitman P. Some aspects of using Scanning Electron Microsope for total dose testing, 1977.
  7. Everhart T.E., Hoff P.H. Determination of kilovolt electron energy dissipation vs penetration distance in solid materials, J. Appl. Phys. 42 (1971) 5837–5846. https://doi.org/10.1063/1.1660019
  8. Grün A.E. Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen Eindimensionaler Fall in Luft, Zeitschrift Fur Naturforsch. – Sect. A J. Phys. Sci. 12 (1957) 89–95. https://doi.org/10.1515/zna-1957-0201
  9. Berger M.J., Seltzer S.M. Tables of Energy Losses and Ranges of Electrons and Positrons, Nasa Sp-3012. (1964) 1–134.
  10. Sternheimer R.M. Density effect for the ionization loss of charged particles, Phys. Rev. 145 (1966) 247–250. https://doi.org/10.1103/PhysRev.145.247
  11. Hunger H.-J., Kuchler L. Measurements of the electron backscattering coefficient in the energy range of 4 to 40 keV, Phys. Status Solidi. 56 (1979) 45–48.
  12. Fitting H.-J . , Glaefeke H., Wild W. Electron penetration and energy transfer in solid targets, Phys. Status Solidi. 43 (1977) 185–190. https://doi.org/10.1002/pssa.2210430119
  13. Kanaya K., Okayama S. Penetration and energy-loss theory of electrons in solid targets, J. Phys. D Appl. Phys. 5 (1972) 43–58. http://iopscience.iop.org/0022-3727/5/1/308
  14. Howell P.G.T., Davy K.M.W., Boyde A. Mean atomic number and backscattered electron coefficient calculations for some materials with low mean atomic number, Scanning. 20 (1998) 35–40. https://doi.org/10.1002/sca.1998.4950200105
  15. Fitting H.J. Six laws of low-energy electron scattering in solids, J. Electron Spectros. Relat. Phenomena. 136 (2004) 265–272. https://doi.org/10.1016/j.elspec.2004.04.003
  16. Niedrig H. Analytical Models in Electron Backscattering, Scan. Electron Microsc. 1982 (1982) 51–68. https://digitalcommons.usu.edu/electron/vol1982/iss1/5
  17. Niedrig H. Electron backscattering from thin films, J. Appl. Phys. 53 (1982). https://doi.org/10.1063/1.331005
  18. Panasiuk M.I., Novikov L.S. Model' kosmosa. Tom I. Fizicheskie usloviia v kosmicheskom prostranstve, 2007. (in Russ.).
  19. Grodstein G.W. X-ray Attenuation Coefficients From 10 keV to 100 MeV, Natl. Bur. Stand. Circ. 583 (1957) 1.
  20. Klein O., Nishina T. Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Zeitschrift Für Phys. 52 (1929) 853–868. https://doi.org/10.1007/BF01366453
  21. Bethe H., Heitler W. On the Stopping of Fast Particles and on the Creation of Positive Electrons, Proc. R. Soc. London. Ser. A. 146 (1934) 83–112. https://doi.org/10.1142/9789812795755_0006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).