Structure and materials of FinFET transistors
- Authors: Abdullayev D.A.1, Kolchina L.M.1, Milovanov R.A.1
-
Affiliations:
- Institute of Nanotechnology and Microelectronics of RAS
- Issue: Vol 54, No 5 (2025)
- Pages: 393-428
- Section: ПРИБОРЫ
- URL: https://journals.rcsi.science/0544-1269/article/view/353909
- DOI: https://doi.org/10.7868/S3034548025050051
- ID: 353909
Cite item
Abstract
Keywords
About the authors
D. A. Abdullayev
Institute of Nanotechnology and Microelectronics of RAS
Email: abdullaev.d@inme-ras.ru
Moscow, Russia
L. M. Kolchina
Institute of Nanotechnology and Microelectronics of RASMoscow, Russia
R. A. Milovanov
Institute of Nanotechnology and Microelectronics of RASMoscow, Russia
References
- Bohr M.T. Logic technology scaling to continue moore’s law // 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM). – IEEE, 2018. P. 1–3. https://doi.org/10.1109/EDTM.2018.8421433
- Abdullaev D.A. Change set of applied materials at reduction topological norms production of integrated microcircuits // Nano- and Microsystems Technology. 2014. № 5. P. 32–38.
- Jung E.S. Creating the Future with Silicon // Advanced Materials Technologies. 2023. V. 8. № 20. P. 2200867. https://doi.org/10.1002/admt.202200867
- Auth C. 22 nm fully-depleted tri-gate CMOS transistors // Proceedings of the IEEE 2012 Custom Integrated Circuits Conference. – IEEE, 2012. P. 1–6. https://doi.org/10.1109/CICC.2012.6330657
- Jan C.H., Bhattacharya U., Brain R., Choi S.J., Curello G., Gupta G., Bai P. A 22 nm SoC platform technology featuring 3-D Tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications // 2012 International Electron Devices Meeting. – IEEE, 2012. P. 3.1. 1–3.1. 4. https://doi.org/10.1109/IEDM.2012.6478969
- Lourts Deepak A., Dhulipalla L. Performance comparison of CMOS and FinFET based SRAM for 22nm Technology // International Journal of Conceptions on Electronics and Communication Engineering. 2013. V. 1. № 1.
- Arabinda Das . Intel’s 22-nm process gives MOSFET switch a facelift // EE Times. URL: https://www.eetimes.com/intels-22-nm-process-gives-mosfet-switch-a-facelift/ (Accessed: 13.05.2025).
- Kaeslin H. Top-down digital VLSI design: from architectures to gate-level circuits and FPGAs. – Morgan Kaufmann, 2014, ISBN: 978-0-12-8000730-3
- Auth C., Allen C., Blattner A., Bergstrom D., Brazier M., Bost M., Mistry K. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors //2012 symposium on VLSI technology (VLSIT). – IEEE, 2012. P. 131–132. https://doi.org/ 10.1109/VLSIT.2012.6242496
- Intel details 22 nm trigate SoC process at IEDM // SolidStateTechnology. URL: https://sst.semiconductor-digest.com/chipworks_real_chips_blog/page/5/ (Accessed: 13.05.2025).
- Ustroystvo protsessorov Intel Ivy Bridge // iXBT. URL: https://www.ixbt.com/cpu/ivy-bridge-architecture-2.shtml (Accessed: 13.05.2025).
- Vitale S.A., Kedzierski J., Healey P., Wyatt P.W., Keast C.L. Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation // IEEE Transactions on Electron Devices. 2010. V. 58. № 2. P. 419–426. https://doi.org/10.1109/TED.2010.2092779
- Lima L.P.B., Dekkers H.F.W., Lisoni J.G., Diniz J.A., Van Elshocht S., De Gendt S. Metal gate work function tuning by Al incorporation in TiN // Journal of Applied Physics. 2014. V. 115. № 7.
- James D. Moore’s Law Continues into the 1x-nm Era // 2016 21st International Conference on Ion Implantation Technology (IIT). – IEEE, 2016. P. 1–10. https://doi.org/10.1063/1.4866323
- Erben E., Hempel K., Triyoso D. Work function setting in high-k metal gate devices // Complementary Metal Oxide Semiconductor. – 2018, ISBN:978-1-78923-497-8.
- Rahman A., Bai P., Curello G., Hicks J., Jan C.H., Jamil M., Yeh J.Y. Reliability studies of a 22 nm SoC platform technology featuring 3-D tri-gate, optimized for ultra low power, high performance and high density application // 2013 IEEE International Reliability Physics Symposium (IRPS). – IEEE, 2013. pp. PI-2. https://doi.org/10.1109/IRPS.2013.6532105
- Kanter D. Intel’s 22FFL Process Improves Power, Cost, and Analog // Real World Technologies. https://www.realworldtech.com/intel-22ffl-process/ (Accessed: 13.05.2025).
- Sell B., Bigwood B., Cha S., Chen Z., Dhage P., Fan P., Bai P. 22FFL: A high performance and ultra low power FinFET technology for mobile and RF applications // 2017 IEEE International Electron Devices Meeting (IEDM). – IEEE, 2017. P. 29.4. 1–29.4. 4 . https://doi.org/10.1109/IEDM.2017.8268475
- Lee H.J., Callender S., Rami S., Shin W., Yu Q., Marulanda J.M. Intel 22nm low-power FinFET (22FFL) process technology for 5G and beyond // 2020 IEEE Custom Integrated Circuits Conference (CICC). – IEEE, 2020. P. 1–7. https://doi.org/10.1109/CICC48029.2020.9075914
- Su C.Y., Armstrong M., Jiang L., Kumar S.A., Landon C.D., Liu S., Ramey S. Transistor reliability characterization and modeling of the 22FFL FinFET technology // 2018 IEEE International Reliability Physics Symposium (IRPS). – IEEE, 2018. pp. 6F-8. https://doi.org/10.1109/IRPS.2018.8353652
- Khaja F.A., Gossmann H.J.L., Colombeau B., Thanigaivelan T. Bulk FinFET junction isolation by heavy species and thermal implants // 2014 20th International Conference on Ion Implantation Technology (IIT). – IEEE, 2014. P. 1–4. https://doi.org/10.1109/IIT.2014.6939998
- Li R., Liu Y., Zhang K., Zhao C., Zhu H., Yin H. Punch through stop layer optimization in bulk FinFETs // 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). – IEEE, 2014. P. 1–3. https://doi.org/10.1109/ICSICT.2014.7021523
- Biswas J., Pradhan N., Biswas D., Das S., Mahapatra S., Lodha S . Impact of punch-through stop implants on channel doping and junction leakage for Ge p -FinFET applications // IEEE Transactions on Electron Devices. – 2019. V. 66. № 4. P. 1635–1641. https://doi.org/10.1109/TED.2019.2897158
- Veendrick H.J.M. Nanometer CMOS ICs. – Springer International Publishing AG, 2017, ISBN: 978-3-319-47597-4.
- Khandelwal S., Duarte J.P., Medury A., Chauhan Y.S., Hu C. New industry standard FinFET compact model for future technology nodes // 2015 Symposium on VLSI Technology (VLSI Technology). – IEEE, 2015. P. T62–T63. https://doi.org/10.1109/VLSIT.2015.7223704
- Bohr M. 14 nm Process Technology: Opening New Horizons// Intel. URL: https://www.intel.com/content/dam/www/public/us/en/documents/technolo gy-briefs/bohr-14nm-idf-2014-brief.pdf (Accessed: 13.05.2025).
- James D. Moore’s Law Continues into the 1x-nm Era // 2016 21st International Conference on Ion Implantation Technology (IIT). – IEEE, 2016. P. 1–10.https://doi.org/10.1109/IIT.2016.7882895
- Jan C.H., Al-Amoody, F., Chang H.Y., Chang T., Chen Y.W., Dias N., Bai P. A 14 nm SoC platform technology featuring 2nd generation Tri-Gate transistors, 70 nm gate pitch, 52 nm metal pitch, and 0.0499 µm 2 SRAM cells, optimized for low power, high performance and high density SoC products // 2015 Symposium on VLSI Technology (VLSI Technology). – IEEE, 2015. P. T12–T13. https://doi.org/10.1109/VLSIT.2015.7223683
- James D. A Quick Look at 14-nm and 10-nm Devices// NCCAVS. URL: https://nccavs-usergroups.avs.org/wp-content/uploads/JTG2018/JTG718-4-James-Siliconics.pdf (Accessed: 13.05.2025).
- Logic Node Samsung Semiconductor// Samsung. URL: https://semiconductor.samsung.com/foundry/process-technology/logic-node/ (Accessed: 13.05.2025).
- Gibb K. Samsung’s 14 nm LPE FinFET transistors// eeNews Europe. URL: https://www.eenewseurope.com/en/samsungs-14-nm-lpe-finfet-transistors/ (Accessed: 13.05.2025).
- Wu S.Y., Lin C.Y., Chiang M.C., Liaw J.J., Cheng J.Y., Yang S.H., Ku Y. An enhanced 16nm CMOS technology featuring 2nd generation FinFET transistors and advanced Cu/low-k interconnect for low power and high performance applications // 2014 IEEE International Electron Devices Meeting. – IEEE, 2014. P. 3.1. 1–3.1. 4. https://doi.org/10.1109/IEDM.2014.7046970
- Wu S.Y., Lin C.Y., Chiang M.C., Liaw J.J., Cheng J.Y., Yang S.H., Ku Y. A 16 nm FinFET CMOS technology for mobile SoC and computing applications // 2013 IEEE International Electron Devices Meeting. – IEEE, 2013. P. 9.1. 1–9.1. 4. https://doi.org/ 10.1109/IEDM.2013.6724591
- Johnson С.R. FinFETs + FD-SOI Proposition: May Save Power // EETimes. URL: https://www.eetimes.com/finfets-fd-soi-proposition-may-save-power/ (Accessed: 20.05.2025).
- Lin C.H., Greene B., Narasimha S., Cai J., Bryant A., Radens C., Agnello P. High performance 14 nm SOI FinFET CMOS technology with 0.0174 µm 2 embedded DRAM and 15 levels of Cu metallization // 2014 IEEE International Electron Devices Meet ing. – IEEE, 2014. P. 3.8. 1–3.8. 3. https://doi.org/ 10.1109/IEDM.2014.7046977
- Intel, IBM Follow Different Strategies On 14nm FinFET // CdrInfo.com. URL: https://cdrinfo.com/d7/content/intel-ibm-follow-different-strategies-14nm-finfet (Accessed: 20.05.2025).
- W901 Weekly Report: This is the most basic FinFET principle // Baidu.com. URL: https://wapbaike.baidu.com/tashuo/browse/content?id=703153 e271698ec87b05f7bc (Accessed: 20.05.2025).
- Cutress I. Intel’s 10 nm Cannon Lake and Core i3-8121U Deep Dive Review // AnandTech. URL: https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review/3 (Accessed: 20.05.2025).
- Oldiges P., Vega R.A., Utomo H.K., Lanzillo N.A., Wassick T., Li J., Shahidi G.G. Chip power-frequency scaling in 10/7 nm node // IEEE Access. – 2020. V. 8. P. 154329–154337. https://doi.org/ 10.1109/ACCESS.2020.3017756
- Auth C., Aliyarukunju A., Asoro M., Bergstrom D., Bhagwat V., Birdsall J., Yeoh A. A 10 nm high performance and low-power CMOS technology featuring 3 rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects // 2017 IEEE International Electron Devices Meeting (IEDM). – IEEE, 2017. P. 29.1. 1–29.1. 4. https://doi.org/ 10.1109/IEDM.2017.8268472
- James D., Gelsinger P. Takes Us on a Trip Down Memory Lane – and a Look Ahead// TechInsights. URL: https://www.techinsights.com/blog/pat-gelsinger-takes-us-trip-down-memory-lane-and-look-ahead (Accessed: 20.05.2025).
- Strojwas A.J., Doong K., Ciplickas D. Yield and Reliability Challenges at 7 nm and Below // 2019 Electron Devices Technology and Manufacturing Conference (EDTM). – IEEE, 2019. P. 179–181 . https://doi.org/10.1109/EDTM.2019.8731146
- Razavieh A., Mahajan V., Oo W.L., Cimino S., Kho - kale S.V., Nagahiro K., Lee T.H. FinFET with contact over active-gate for 5G ultra-wideband applications // 2020 IEEE Symposium on VLSI Technology. – IEEE, 2020. P. 1–2. https://doi.org/10.1109/VLSITechnology18217.2020.9265095
- Shilling A. Sravneniye tekhprotsessov 10 i 14 nm Intel, TSMC и Samsung // Hardwareluxx.ru. URL: https://www.hardwareluxx.ru/index.php/news/ hardware/prozessoren/44187-10-14-nm-intel-tsmc-samsung.html (Accessed: 20.05.2025).
- James D. A Quick Look at 14-nm and 10-nm Devices // NCCAVS. URL: https://nccavs-usergroups.avs.org/wp-content/uploads/JTG2018/JTG718-4-James-Siliconics.pdf#page=13.00 (Accessed: 20.05.2025).
- Semiconductor Process Technology// MSSCORPS. URL: https://www.msscorps.com/ec99/rwd1520/category.asp?category_id=23 (Accessed: 20.05.2025).
- Kanter D. Intel 4 Process Scales Logic with Design, Materials, and EUV // Real World Tech. URL: https://www.realworldtech.com/intel-4/ (Accessed: 20.05.2025).
- Scotten J. Intel 4 Deep Dive // SemiWiki. URL: https://semiwiki.com/semiconductor-manufacturers/intel/314047-intel-4-presented-at-vlsi/ (Accessed: 20.05.2025).
- Singer P. Intel 4 Process Drops Cobalt Interconnect, Goes with Tried and Tested Copper with Cobalt Liner/Cap // Semiconductor Digest. URL: https://www.semiconductor-digest.com/intel-4-process-drops-cobalt-interconnect-goes-with-tried-and-tested-copper-with-cobalt-liner-cap/ (Accessed: 20.05.2025).
- Mujtaba H. Intel 3 Process Node: 18% Performance at Same Power, 10% Higher Density, Shipping Xeon 6 CPUs Now // Wccftech. URL: https://wccftech.com/intel-3-process-node-18-percent-performance-same-power-10-percent-higher-density-shipping-xeon-6-cpus-now/ (Accessed: 20.05.2025).
- Hafez W. Intel Delivers Leading-Edge Foundry Node with Intel 3 Technology; on Path Back to Process Leadership // Intel Community. URL: https://community.intel.com/t5/Blogs/Intel-Foundry/Systems-Foundry-for-the-AI-Era/Intel-Delivers-Leading-Edge-Foundry-Node-with-Intel-3-Technology/post/1607454 (Accessed: 20.05.2025).
- Intel Reaches 3 nm Milestone // Global SMT & Packaging. URL: https://www.globalsmt.net/advanced-packaging/intel-reaches-3nm-milestone/ (Accessed: 20.05.2025).
- Samsung Electronics Starts Production of EUV-Based 7nm LPP Process// Samsung Semiconductor EMEA. URL: https://semiconductor.samsung.com/emea/news-events/news/samsung-electronics-starts-production-of-euv-based-7nm-lpp-process/ (Accessed: 20.05.2025).
- Ha D., Yang C., Lee J., Lee S., Lee S.H., Seo K.I., Jung E.S. Highly manufacturable 7 nm FinFET technology featuring EUV lithography for low power and high performance applications // 2017 Symposium on VLSI Technology. – IEEE, 2017. P. T68–T69 . https://doi.org/10.23919/VLSIT.2017.7998202
- Xie R., Montanini P., Akarvardar K., Tripathi N., Haran B., Johnson S., Khare M. A 7 nm FinFET technology featuring EUV patterning and dual strained high mobility channels // 2016 IEEE international electron devices meeting (IEDM). – IEEE, 2016. P. 2.7. 1–2.7. 4, https://doi.org/10.1109/IEDM.2016.7838334.
- Guo D., Karve G., Tsutsui G., Lim K. Y., Robison R., Hook T., Khare M. FinFET technology featuring high mobility SiGe channel for 10 nm and beyond // 2016 IEEE Symposium on VLSI Technology. – IEEE, 2016. P. 1–2. https://doi.org/10.1109/VLSIT.2016.7573360
- Kurniawan E.D., Du Y.T., Wu Y.C., Lin Y.H. Optimization of leakage current suppression for super steep retrograde well (SSRW) 5nm-node FinFET technology // 2018 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). – IEEE, 2018. P. 104–107. https://doi.org/10.1109/ICRAMET.2018.8683936
- nm Technology// TSMC. URL: https://www.tsmc.com/english/ dedicatedFoundry/technology/logic/l_7nm (Accessed: 20.05.2025).
- nm lithography process// WikiChip. URL: https://en.wikichip.org/ wiki/7_nm_lithography_process (Accessed: 20.05.2025).
- Wu S.Y., Lin C.Y., Chiang M.C., Liaw J.J., Cheng J.Y., Yang S.H., Jang S.M. A 7 nm CMOS platform technology featuring 4th generation FinFET transistors with a 0.027 µm 2 high density 6-T SRAM cell for mobile SoC applications // 2016 IEEE International Electron Devices Meeting (IEDM). – IEEE, 2016. P. 2.6. 1–2.6. 4. https://doi.org/10.1109/IEDM.2016.7838333
- Das A. Turning the nascent into the adjacent – tracking patent innovation // UnitedLex. URL: https://unitedlex.com/insights/turning-the-nascent-into-the-adjacent-tracking-patent-innovation/ (Accessed: 20.05.2025).
- Chen F. SALELE Double Patterning for 7 nm and 5 nm Nodes // LinkedIn. URL: https://www.linkedin.com/pulse/salele-double-patterning-7nm-5nm-nodes-frederick-chen (Accessed: 20.05.2025).
- Bae D., Bae G., Bhuwalka K.K., Lee S.H., Song M.G., Jeon T.S., Jung E.S. A novel tensile Si (n) and compressive SiGe (p) dual-channel CMOS FinFET co-integration scheme for 5 nm logic applications and beyond // 2016 IEEE International Electron Devices Meeting (IEDM). – IEEE, 2016. P. 28.1.1–28.1.4. https://doi.org/10.1109/IEDM.2016.7838496
- TEM analysis on Samsung 5 nm technology node // MSSCORPS. URL: https://en.msscorps.com/ec99/rwd1772/news.asp?newsno=5 (Accessed: 20.05.2025).
- Transistor Architecture Generation: From FinFETs to GAAFETs // EDN Taiwan. URL: https://www.edntaiwan.com/20241106nt71-transistor-architecture-generation-from-finfets-to-gaafets/ (Accessed: 20.05.2025).
- Hiramoto T. Five nanometre CMOS technology //Nature Electronics. – 2019. V. 2. № 12. P. 557–558. https://doi.org/10.1038/s41928-019-0343-x
- Liu J.C., Mukhopadhyay S., Kundu A., Chen S.H., Wang H.C., Huang D.S., He J. A reliability enhanced 5 nm CMOS technology featuring 5th generation FinFET with fully-developed EUV and high mobility channel for mobile SoC and high performance computing application // 2020 IEEE International Electron Devices Meeting (IEDM). – IEEE, 2020. P. 9.2.1–9.2.4. https://doi.org/ 10.1109/IEDM13553.2020.9372009
- Kwon Y.M. Revealing the Hidden Innovations within the A15 Bionic SoC Found in the iPhone 13 // Unitedlex. URL: https://unitedlex.com/insights/revealing-the-hidden-innovations-within-the-a15-bionic-soc-found-in-the/ (Accessed: 20.05.2025).
- Smith R. Qualcomm Announces Snapdragon 8 Gen 1: Moving to TSMC for More Speed, Lower Power // AnandTech. URL: https://www.anandtech .com/show/17395/qual- comm-announces-snapdragon-8-gen-1-moving-to-tsmc-for-more-speed-lower-power (Accessed: 20.05.2025).
- Li R., Boyd J. Qualcomm dual-sourced Snapdragon 8(+) Gen1 SOC // TechInsights. URL: https://www.techinsights.com/blog/qualcomm-snapdragon-8-gen1-soc (Accessed: 20.05.2025).
- Samsung Begins Chip Production Using 3 nm Process Technology with GAA Architecture // Samsung Newsroom. URL: https://web.archive.org/web/20220630035207/https://news.samsung.com/global/samsung-begins-chip-production-using-3nm-process-technology-with-gaa-architecture (Accessed: 20.05.2025).
- Patel D., Ahmad A. TSMC’s 3 nm Conundrum, Does It Even Make Sense? – N3 & N3E Process Technology & Cost Detailed // SemiAnalysis. URL: https://semianalysis.com/2022/12/21/tsmcs-3nm-conundrum-does-it-even/ (Accessed: 20.05.2025).
Supplementary files

