Vol 207 (2022)

Статьи

Boundary and outer boundary-value problems for the Poisson equation on noncompact Riemannian manifolds

Bliznyuk K.A., Mazepa E.A.

Abstract

Abstract. In this paper, we examine the existence of solutions of the Poisson equations on a noncompact Riemannian manifold M without boundary. To describe the asymptotic behavior of a solution, we is introduce the notion of φ-equivalence on the set of continuous functions on a Riemannian manifold and establish a relationship between the solvability of boundary-value problems for the Poisson equations on the manifold M and outside some compact subset B M with the same growth “at infinity.” Moreover, the notion of φ-equivalence of continuous functions on M allows one to estimate the rate of asymptotic convergence of solutions of boundary-value and outer boundary-value problems to boundary data.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:3-9
pages 3-9 views

Conjugation problem for elliptic pseudodifferential equations on the plane

Vasilyev V.B., Eberlein N.V.

Abstract

The conjugation problem for an elliptic pseudodifferential equation on the plane with an angular cut in the Sobolev–Slobodetskii space is considered. In addition to the boundary conditions, integral conditions are posed. Under a specific wave factorization of the symbol of the pseudodifferential operator, we reduce this boundary-value problem to an equivalent system of linear integral equations.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:10-15
pages 10-15 views

Hyperbolicity of a class of first-order quasilinear covariant equations of divergent type

Virchenko Y.P., Novoseltseva A.E.

Abstract

A special class of systems of first-order quasilinear partial differential equations is considered. These divergent-type systems are invariant under time and space translations; they are transformed covariantly under the action of the rotation group. We give a description of the class of nonlinear first-order differential operators corresponding to the systems of the considered class and prove a theorem on the equivalence of the concepts of hyperbolicity and hyperbolicity in the sense of Friedrichs.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:16-26
pages 16-26 views

On the inverse closedness of the subalgebra of local absolutely summing operators

Guseva E.Y.

Abstract

A local absolutely summing operator is an operator T acting in lp(c,X), 1p, of the form

(Tx)k=     mcbkmxkm,kc,

where X is a Banach space, bkm : X X is an absolutely summation operator, and

bkmAS(X)βm

for some βl1(c,), AS(X) is the the norm of the ideal of absolutely summing operators. We prove that if the operator 1+T is invertible, then the inverse operator has the form 1+T1, where T1 is also a local absolutely summing operator. A similar assertion is proved for the case where the operator T acts in Lp(c,)), 1p.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:27-36
pages 27-36 views

Asymptotic estimates for the solution of the cauchy problem for a differential equation with linear degeneration

Emel’yanov D.P., Lomov I.S.

Abstract

Application of the method of separation of variables to problems for the linearly degenerate equation uxx''+yuyy''+c(y)uy'a(x)u=f(x,y) in a rectangle leads to problems for the singularly perturbed ordinary differential equation with degeneration yY''+c(y)Y'(π2k2+a(y))Y=fk(y), k. In this paper, we examine the asymptotic behavior of solutions of this equation with given initial data at 0 and zero right-hand side as k +and obtain the leading term of the asymptotics in the explicit form.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:37-47
pages 37-47 views

Some mathematical problems of atmospheric electricity

Kalinin A.V., Tyukhtina A.A.

Abstract

In this paper, we discuss various formulations of mathematical problems arising in the description of the global electric circuit in the Earth’s atmosphere. We consider initial-boundary-value problems for the nonstationary system of Maxwell equations, the system of Maxwell equations in the nonrelativistic electric approximation, and for the system of Maxwell equations in the quasistationary approximation generalizing the nonrelativistic electric and magnetic approximations.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:48-60
pages 48-60 views

Equiconvergence and equisummability almost everywhere of a multiple orthogonal series for various types of convergence

Konoplev B.V.

Abstract

In this paper, we obtain coefficient conditions that guarantee the equiconvergence and Cesaro equisummability almost everywhere of a multiple orthogonal series summed over two different systems of nested sets covering an integer lattice of the arithmetic space.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:61-67
pages 61-67 views

Iterative process of the search for coincidence points in the model “supply-demand”

Kotyukov A.M.

Abstract

In this paper, we construct an algorithm for finding equilibrium positions in the “supplydemand” model based on the theory of covering mappings and the problem of coincidence points for two mappings. The search algorithm is based on the Hooke–Jeeves method. A software implementation of the algorithm is verified by numerical experiments for model dimensions 1–4.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:68-76
pages 68-76 views

The Keynes model of the business cycle and the problem of diffusion instability

Kulikov A.N., Kulikov D.A., Frolov D.G.

Abstract

In this paper, we consider a version of the “reaction-diffusion” system, which can be interpreted as a mathematical model of the Keynes business cycle, taking into account spatial factors. The system is considered together with homogeneous Neumann boundary conditions. For such a nonlinear boundary-value problem, bifurcations in a neighborhood of a spatially homogeneous equilibrium state are studied in the near-critical case of zero and a pair of purely imaginary eigenvalues of the stability spectrum. An analysis of bifurcations allows one to obtain sufficient conditions for the existence and stability of spatially homogeneous and spatially inhomogeneous cycles and a spatially inhomogeneous equilibrium state. The analysis of the problem stated is based on the methods of the theory of infinite-dimensional dynamical systems, namely, the method of integral (invariant) manifolds and the method of normal forms. These methods and asymptotic methods of analysis lead to asymptotic formulas for periodic solutions and inhomogeneous equilibria. For such solutions, we also examine their stability.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:77-90
pages 77-90 views

Study of mathematical models of economic processes by methods of the theory of covering mappings

Nikanorov S.O.

Abstract

In this paper, we study the Walras–Evans–Samuelson dynamic continuous model for a two-commodity market using the theory of covering mappings. We obtain sufficient conditions for the existence of an equilibrium position in this model. The equilibrium in this model is considered as a point of coincidence of two mappings: the demand mapping and the supply mapping, which depend on the prices for the presented types of goods and on the rates of change of these prices.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:91-100
pages 91-100 views

On some features of diffusion logistics models

Polovinkina M.V.

Abstract

We note that in some cases diffusion terms in an ordinary differential equations (for example, the logistic equation) can improve (weaken) sufficient conditions for the stability of a stationary solution. Examples are given.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:101-106
pages 101-106 views

On the product of ls,r-nuclear operators and operators close to them

Reinov O.I.

Abstract

In this paper, we analyze the possibilities of factorization of various types of nuclear operators through Hilbert spaces and apply the results obtained to problems on the distribution of eigenvalues of operators from the corresponding classes.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:107-119
pages 107-119 views

On regularization of classical optimality conditions in convex optimal control

Sumin M.I.

Abstract

We discuss regularization of two classical optimality conditions—the Lagrange principle (PL) and the Pontryagin maximum principle (PMP) — in a convex optimal control problem for a parabolic equation with an operator equality constraint and distributed initial and boundary controls. The regularized Lagrange principle and the Pontryagin maximum principle are based on two regularization parameters. These regularized principles are formulated as existence theorems for the original problem of minimizing approximate solutions.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:120-143
pages 120-143 views

Some extremal properties of mean characteristics of fuzzy numbers

Khatskevich V.L.

Abstract

In this paper, we consider extremal properties of mean values of fuzzy numbers and their systems with respect to some metrics on the set of fuzzy numbers. The quasi-scalar product of fuzzy numbers is introduced and examined.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;207:144-156
pages 144-156 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».