Vol 21, No 1 (2016)

Articles

EQUILIBRIUM PRICES IN ECONOMIC EQUILIBRIUM MODELS WITH TRANSACTION COSTS

Belyakova E.S., Pavlova N.G.

Abstract

In this paper, we generalize the results obtained in [1] for the case of different shares of transaction costs. As a corollary of the theory of metric regular maps (theorems about the existence of coincidence points), we obtain sufficient conditions of the existence of equilibrium price vector in the considered models.
Russian Universities Reports. Mathematics. 2016;21(1):9-16
pages 9-16 views

ON WELL-POSEDNESS OF GENERALIZED NEURAL FIELD EQUATIONS WITH IMPULSIVE CONTROL

Burlakov E.O., Zhukovskiy E.S.

Abstract

We formulate and prove the theorem on well-posedness of abstract Volterra equations in metric spaces. We consider nonlinear nonlocal integral Volterra equation involving generalizing equations typically used in mathematical neuroscience. We investigate solutions that tend to zero at any moment with unbounded growth of the spatial variable. In the literature such solutions are called «spatially localized solutions» or «bumps». They correspond to normal brain functioning. For the main equation, we consider an impulsive control problem, where the control parameters are moments, when the solution discontinue, and corresponding jumps’ values. Such control systems model electrical stimulation used in the presence of various diseases of central nervous system. We define suitable complete metric (not linear) space. Using the aforementioned theorem, we obtain conditions for existence and uniqueness of solution to this equation and continuous dependence of this solution on the control.
Russian Universities Reports. Mathematics. 2016;21(1):16-27
pages 16-27 views

THE CONTINUITY OF THE MEASURE LAGRANGE-MULTIPLIER FROM THE MAXIMUM PRINCIPLE FOR AN OPTIMAL CONTROL PROBLEM WITH EQUALITY AND INEQUALITY STATE CONSTRAINTS UNDER WEAK REGULARITY CONDITIONS OF THE EXTREMAL PROCESS

Gorbacheva A.V.

Abstract

Under weak regularity assumptions, the continuity of the measure Lagrange multiplier from the maximum principle for control problems with state constraints of equality and inequality types is investigated. Appropriate assertions are proved.
Russian Universities Reports. Mathematics. 2016;21(1):28-39
pages 28-39 views

CLARIFICATION OF THE OPTIMALITY CONDITIONS IN CONTROL PROBLEMS WITH STATE CONSTRAINTS OF EQUALITY AND INEQUALITY TYPES

Gorbacheva A.V., Karamzin D.Y.

Abstract

The continuity of the measure Lagrange multiplier from the maximum principle for control problems with state constraints is investigated. It is proved, under certain regularity assumptions, that the distribution function of the measure is H¨older continuous with exponent 1/2.
Russian Universities Reports. Mathematics. 2016;21(1):40-55
pages 40-55 views

INTEGRAL GUIDING FUNCTIONS AND PERIODIC SOLUTIONSFOR INCLUSIONS WITH CAUSAL MULTIOPERATORS

Kornev S.V., Obukhovskii V.V.

Abstract

In the present paper the method of guiding functions is applied to study the periodic problem for a differential inclusion with a causal multioperator. At first we consider the case when the multioperator is closed and convex-valued. Then the case of a non-convex-valued and lower semicontinuous right-hand part is considered.
Russian Universities Reports. Mathematics. 2016;21(1):55-65
pages 55-65 views

SINGULARITIES OF GEODESIC FLOWS AND GEODESIC LINES IN PSEUDO-FINSLER SPACES. I

Kurbatskiy A.N., Pavlova N.G., Remizov A.O.

Abstract

This is a first paper in the series devoted to singularities of geodesic flows in generalized Finsler (pseudo-Finsler) spaces. Geodesics are defined as extremals of a certain auxiliary functional whose non-isotropic extremals coincide with extremals of the action functional. This allows to consider isotropic lines as (unparametrized) geodesics, similarly to pseudo-Riemannian metrics. In the next forthcoming paper we study generic singularities of sodefined geodesic flows in the case when the pseudo-Finsler metric is given by a generic 3-form on a two-dimensional manifold.
Russian Universities Reports. Mathematics. 2016;21(1):66-75
pages 66-75 views

POISSON PROBLEM FOR A LINEAR FUNCTIONAL DIFFERENTIAL EQUATION

Labovskiy S.M., Getimane M´ario Frengue -.

Abstract

The solvability, existence and positiveness of the Green function of the Poisson problem -∆u- Ωu y -u x r x,dy =ρf, u | Γ( Ω) =0 are showed. The spectral properties of corresponding eigenvalue problem are considered. Here Ω is an open set in R N and ΓΩ is the boundary of the Ω . For almost all x ϵ Ω, r x,∙ is a measure satisfying certain symmetry condition. The function ρ is a positive weight. This problem has a clear mechanical interpretation.
Russian Universities Reports. Mathematics. 2016;21(1):76-81
pages 76-81 views

ON A PROBLEM OF CONTINUATION OF THE POTENTIAL FIELD IN NON-PERIODIC MODELS

Laneev E.B., Muratov M.N., Sibelev N.S., Gerasimova A.V.

Abstract

A stable solution to the problem of the continuation of potential fields with non-planar surfaces under non-periodic models was obtained.
Russian Universities Reports. Mathematics. 2016;21(1):82-88
pages 82-88 views

COVERING MAPPINGS IN THE SPACES WITH VECTOR-VALUED METRICS

Pluzhnikova E.A.

Abstract

The concepts of covering mapping and of metric regularity are extended to mappings in the spaces with vector-valued metrics (such a «metric» is understood as a function with the standard metric’s properties which values are elements of a cone in a linear normed space). The theorem on points of coincidence of a covering and a Lipschitz continuous (with respect to a vector-valued metric) mappings is formulated and proved. This statement is an analog of the theorem about coincidence points due to A.V. Arutyunov. Some applications of the obtained results are illustrated on the example of studying one class of difference equations in the space of measurable essentially bounded functions.
Russian Universities Reports. Mathematics. 2016;21(1):88-95
pages 88-95 views

А COMPOSITION METHOD FOR CONSTRUCTING TRANSMUTATIONS FOR DIFFERENTIAL EQUATIONS

Ryzhkova E.V., Sitnik S.M.

Abstract

The paper is devoted to transmutation theory for ordinary and partial differential operators. It has many applications to inverse problems, spectral theory, nonlinear and soliton problems, singular equations, generalized analytic functions, singular boundary-value problems, fractional integrals and function spaces embedding. In this survey paper the most important classes of transmutations in modern theory is introduced and the new method is proposed to find transmutations via integral transform compositions.
Russian Universities Reports. Mathematics. 2016;21(1):95-108
pages 95-108 views

THE REMOVABLE SINGULARITY THEOREM FOR HARMONIC FUNCTION ON A TWO-DIMENSIONAL STRATIFIED SET

Savasteev D.V.

Abstract

We prove the removable singularity theorem for harmonic function on a two-dimensional stratified set. It is shown that harmonic and bounded function defined on the twodimensional stratified set, except the zero-dimensional strata, is harmonic extendable over all stratified set. This theorem plays an important role in the proof of the solvability of the Dirichlet problem for the Laplace equation on stratified set and in the implement of Poincar-Perron method on a stratified set. In proof we use analogues of divergence theorem and Harnack’s inequality on a stratified set. We provide basic information from the theory of differential equations on the stratified sets, which are necessary for the formulation and proof of main result.
Russian Universities Reports. Mathematics. 2016;21(1):108-116
pages 108-116 views

ABOUT INVERTIBILITY OF LINEAR DIFFERENTIAL OPERATORS IN SOME SPACES OF THE SOBOLEV-BESOV FUNCTIONS

Tyurin V.M.

Abstract

The simultaneous invertibility (well-posedness) of linear differential operators with partial derivatives in the Besov type functional spaces is studied.
Russian Universities Reports. Mathematics. 2016;21(1):116-121
pages 116-121 views

THE METHODOLOGY OF ASSESSMENT OF HEALTH-RELATED QUALITY OF LIFE

Finogenko I.A., Diakovich M.P., Blokhin A.A.

Abstract

The article is dedicated to using the methods of cognitive analysis and analysis of hierarchy for study such complex object, as with health-related quality of life of the population. Interconnected concepts of cognitive map are used for building of the hierarchical model of quality of life and shaping the matrixes of the fresh comparisons - a bases of all computing procedures of the method of the analysis hierarchy for transformation of qualitative information on under investigation object in quantitative - an weight factors for all its descriptions. The analysis hierarchy method and cognitive analysis have independent importance, but, as it is shown, in combination, they will complement each other and become the new instrument of the study complex and bad formalized object with a set interacting heterogeneous subjective and objective factor. The Main result of our research is the description of methods for studying health-related quality of life with the combined use of cognitive maps and the basic procedures of hierarchy’s analysis method.
Russian Universities Reports. Mathematics. 2016;21(1):121-130
pages 121-130 views

Derivatives of interval elementary functions

Levin V.I.

Abstract

The problems related to calculation of derivatives of interval-specified functions are considered. These problems are relevant in study of systems with any level of uncertainty (nondeterministic systems). Specifically we speak about simple systems described by elementary interval-specific functions. Accordingly we solved problem of calculating derivatives of elementary interval-specified functions. Previously obtained formulas and methods of finding derivatives of any intervally defined functions are used. Basic definitions related to derivatives of the interval-specified functions are given and formulas of two types that allow you to calculate interval derivatives are presented. The first type formulae express derivatives in the closed interval form, which requires to compute using the apparatus of interval mathematics. But formulae of the second type can express derivatives in the open interval form, i. e. in form of two formulas. Formulas above expresses the lower and the upper limits of the interval representing the derivative. Here finding the derivative of interval-defined function is reduced to computation of two ordinary certain functions. Using above mathematical apparatus we find the derivatives of all elementary interval functions: interval constant, interval power function, interval exponential function, interval logarithmic function, interval natural-logarithmic function, interval trigonometric functions (sine, cosine, tangent, cotangent), interval inverse trigonometric functions (arcsine, arccosine, arctangent and arccotangent). Formulae of all the derivatives are shown in form of an open interval. The difference between derivatives of interval elementary functions and the derivatives of normal (i.e. non-interval) elementary functions is discussed.
Russian Universities Reports. Mathematics. 2016;21(1):131-141
pages 131-141 views

Information processes of artificial neural networks training by method of full scanning and analytical model of parallel version of these processes

Kryuchin O.V.

Abstract

Parallel methods of artificial neural networks training with the help of full scanning are described. The analytical model of information processes of these methods is presented.
Russian Universities Reports. Mathematics. 2016;21(1):142-145
pages 142-145 views

Data protection system Terminus

Kryuchin O.V., Rybakov M.A.

Abstract

Data protection system Terminus, which was aimed at protection data from unsanctioned access is described. This protection includes mandate and discrete division.
Russian Universities Reports. Mathematics. 2016;21(1):146-149
pages 146-149 views

Development and approbation of information systemS, based on artificial neural networks technology

Kryuchin O.V., Arzamastsev A.A., Vyazovova E.V.

Abstract

The information system which uses artificial neural networks as intellectual core is described. The developed system approbation results are presented.
Russian Universities Reports. Mathematics. 2016;21(1):150-153
pages 150-153 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».