INTEGRAL GUIDING FUNCTIONS AND PERIODIC SOLUTIONSFOR INCLUSIONS WITH CAUSAL MULTIOPERATORS

Cover Page

Cite item

Full Text

Abstract

In the present paper the method of guiding functions is applied to study the periodic problem for a differential inclusion with a causal multioperator. At first we consider the case when the multioperator is closed and convex-valued. Then the case of a non-convex-valued and lower semicontinuous right-hand part is considered.

About the authors

Sergei Viktorovich Kornev

Voronezh State Pedagogical University

Email: kornev_vrn@rambler.ru
Candidate of Physics and Mathematics, Associate Professor of the Higher Mathematics Department Voronezh, the Russian Federation

Valerii Vladimirovich Obukhovskii

Voronezh State Pedagogical University

Email: valerio-ob2000@mail.ru
Doctor of Physics and Mathematics, Head of the Higher Mathematics Department Voronezh, the Russian Federation

References

  1. Tonelli L. Sulle equazioni funzionali di Volterra // Bull. Calcutta Math. Soc., 1930. V. 20. P. 31-48.
  2. Тихонов А.Н. О функциональных уравнениях типа Volterra и их применениях к некоторым задачам математической физики // Бюл. МГУ. Секция А. Сер. матем. и мех., 1938. Т. 1. Вып. 8. С. 1-25.
  3. Corduneanu C. Functional Equations with Causal Operators. Stability and Control: Theory, Methods and Applications, 16. London: Taylor and Francis, 2002.
  4. Drici Z., McRae F.A., Vasundhara Devi J. Differential equations with causal operators in a Banach space // Nonlinear Anal., 2005. V. 62. №2. 301-313.
  5. Drici Z., McRae F.A., Vasundhara Devi J. Monotone iterative technique for periodic boundary value problems with causal operators // Nonlinear Anal., 2006. V. 64. № 6. P. 1271-1277.
  6. Jankowski T. Boundary value problems with causal operators // Nonlinear Anal., 2008. V. 68. № 12. P. 3625-3632.
  7. Lupulescu V. Causal functional differential equations in Banach spaces // Nonlinear Anal., 2008. V. 69. № 12. P. 4787-4795.
  8. Obukhovskii V., Zecca P. On certain classes of functional inclusions with causal operators in Banach spaces // Nonlinear Anal., 2011. V. 74. № 8. P. 2765-2777.
  9. Бурлаков Е.О., Жуковский Е.С. Непрерывная зависимость от параметров решений уравнений Вольтера с локально сжимающими операторами // Известия вузов. Математика, 2010. № 8. С. 16-29.
  10. Жуковский Е.С., Жуковская Т.В., Алвеш М.Ж. Корректность уравнений с обобщенно вольтерровыми отображениями метрических пространств // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2010. Т. 15. Вып. 6. С. 1669-1672.
  11. Красносельский М.А. Оператор сдвига по траекториям дифференциальных уравнений. M.: Наука, 1966.
  12. Красносельский М.А., Перов А.И. Об одном принципе существования ограниченных, периодических и почти-периодических решений у систем обыкновенных дифференциальных уравнений // ДАН СССР, 1958. Т. 123. № 2. С. 235-238.
  13. Красносельский М.А., Забрейко П.П. Геометрические методы нелинейного анализа. M.: Наука, 1975.
  14. Mawhin J. Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics, 40. American Mathematical Society. Providence. R.I., 1979.
  15. Mawhin J., Ward J.R. Guiding-like functions for periodic or bounded solutions of ordinary differential equations // Discrete Contin. Dyn. Syst., 2002. V. 8. № 1. P. 39-54.
  16. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных отображений и дифференциальных включений. Изд. 2-е. М.: Либроком, 2011.
  17. G´orniewicz L. Topological Fixed Point Theory of Multivalued Mappings. Berlin: Springer, 2006.
  18. Fonda A. Guiding functions and periodic solutions to functional differential equations // Proc. Amer. Math. Soc., 1987. V. 99. № 1. P. 79-85.
  19. Kornev S., Obukhovskii V. On some developments of the method of integral guiding functions // Funct. Differ. Equ., 2005. V. 12. № 3-4. P. 303-310.
  20. Loi N.V., Obukhovskii V., Zecca P. On the global bifurcation of periodic solutions of differential inclusions in Hilbert spaces // Nonlinear Anal., 2013. V. 76. P. 80-92.
  21. Kornev S., Obukhovskii V., Yao J.C. On asymptotics of solutions for a class of functional differential inclusions // Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 2014. V. 34. Issue 2. P. 219-227.
  22. Корнев С.В., Обуховский В.В. Асимптотическое поведение решений дифференциальных включений и метод направляющих функций // Дифференциальные уравнения, 2015. Т. 51. № 6. С. 700-705.
  23. Obukhovskii V., Zecca P., Loi N.V., Kornev S. Method of guiding functions in problems of nonlinear analysis. Lecture Notes in Math. V. 2076. Berlin: Springer, 2013.
  24. Deimling K. Multivalued Differential Equations. Berlin; New York: Walter de Gruyter, 1992.
  25. Kamenskii M., Obukhovskii V., Zecca P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin-New York: Walter de Gruyter, 2001.
  26. Fryszkowski A. Fixed point theory for decomposable sets. Dordrecht: Kluwer AP, 2004.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).