THE REMOVABLE SINGULARITY THEOREM FOR HARMONIC FUNCTION ON A TWO-DIMENSIONAL STRATIFIED SET
- Authors: Savasteev D.V.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 21, No 1 (2016)
- Pages: 108-116
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/362915
- DOI: https://doi.org/10.20310/1810-0198-2016-21-1-108-116
- ID: 362915
Cite item
Full Text
Abstract
We prove the removable singularity theorem for harmonic function on a two-dimensional stratified set. It is shown that harmonic and bounded function defined on the twodimensional stratified set, except the zero-dimensional strata, is harmonic extendable over all stratified set. This theorem plays an important role in the proof of the solvability of the Dirichlet problem for the Laplace equation on stratified set and in the implement of Poincar-Perron method on a stratified set. In proof we use analogues of divergence theorem and Harnack’s inequality on a stratified set. We provide basic information from the theory of differential equations on the stratified sets, which are necessary for the formulation and proof of main result.
About the authors
Denis Vladimirovich Savasteev
Voronezh State University
Email: savasteev@gmail.com
Postgraduate Student, Department of Operational Equation Studies and Functional Analysis Voronezh, the Russian Federation
References
Покорный Ю.В., Пенкин О.М. и др. Дифференциальные уравнения на геометрических графах // М.: Физматлит, 2005. 272 с. Уэрмер Дж. Теория потенциала // М.: Мир, 1980. 136 с. Ощепкова С.Н., Пенкин О.М. Теорема о среднем для эллиптического оператора на стратифицированном множестве // Матем. заметки, 2007. Т. 81. Вып. 3. С. 417-426. Беседина С.В. Неравенство Харнака для эллиптического уравнения на стратифицированном множестве // Вестник Воронежского гос. ун-та. Сер. Физика. Математика. 2004. № 1. С. 77-81.
Supplementary files

