Modification of the Ferromagnetic Properties of Si1 –xMnx Thin Films Synthesized by Pulsed Laser Deposition with a Variation in the Buffer-Gas Pressure


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of thin films of Si1 –xMnx alloys with a thickness from 50 to 100 nm grown by pulsed laser deposition on an Al2O3 substrate in vacuum and in an argon atmosphere is investigated. The significant effect of the buffer-gas pressure in the sputtering chamber on the structural and magnetic homogeneity of the obtained films is shown. The conditions for the formation of a ferromagnetic phase with a high Curie temperature (>300 K) in the samples are studied. With the use of the Langmuir probe method, the threshold of ablation of a MnSi target by second harmonic radiation (λ = 532 nm) of a Nd:YAG Q-switch laser is determined. The time-of-flight curves for the plume ions are obtained with a change in the energy density at the target and argon pressure in the sputtering chamber. A nonmonotonic dependence of the probe time-of-flight signal amplitude on the argon pressure is established for high-energy particles of the plume.

About the authors

O. A. Novodvorsky

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Author for correspondence.
Email: onov@mail.ru
Russian Federation, Shatura, 140700

V. A. Mikhalevsky

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Shatura, 140700

D. S. Gusev

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Shatura, 140700

A. A. Lotin

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Shatura, 140700

L. S. Parshina

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Shatura, 140700

O. D. Khramova

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Shatura, 140700

E. A. Cherebylo

Institute of Laser and Information Technologies—Branch of the Federal Scientific Research Center
“Crystallography and Photonics”, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Shatura, 140700

A. B. Drovosekov

Kapitza Institute for Physical Problems, Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Moscow, 119334

V. V. Rylkov

National Research Center “Kurchatov Institute”; Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics,
Russian Academy of Sciences

Email: onov@mail.ru
Russian Federation, Moscow, 123182; Fryazino, 141190

S. N. Nikolaev

National Research Center “Kurchatov Institute”

Email: onov@mail.ru
Russian Federation, Moscow, 123182

K. Yu. Chernoglazov

National Research Center “Kurchatov Institute”

Email: onov@mail.ru
Russian Federation, Moscow, 123182

K. I. Maslakov

Moscow State University

Email: onov@mail.ru
Russian Federation, Moscow, 119991


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies