On Derivation of Dresselhaus Spin-Splitting Hamiltonians in One-Dimensional Electron Systems
- Authors: Kokurin I.A.1,2,3
- 
							Affiliations: 
							- Institute of Physics and Chemistry, Mordovia State University
- Ioffe Institute
- St. Petersburg Electrotechnical University “LETI”
 
- Issue: Vol 52, No 14 (2018)
- Pages: 1868-1870
- Section: Spin-Related Phenomena in Nanostructures
- URL: https://journals.rcsi.science/1063-7826/article/view/205092
- DOI: https://doi.org/10.1134/S1063782618140142
- ID: 205092
Cite item
Abstract
Two-dimensional (2D) semiconductor structures of materials without inversion center (e.g. zinc-blende AIIIBV) possess the zero-field conduction band spin-splitting (Dresselhaus term), which is linear and cubic in wavevector k, that arises from cubic in k splitting in bulk material. At low carrier concentration the cubic term is usually negligible. However, if we will be interested in the following dimensional quantization (in 2D plane) and the character width in this direction is comparable with the width of 2D-structure, then we have to take into account k3-terms as well (even at low concentrations), that after quantization leads to comparable contribution that arises from k-linear term. We propose the general procedure for derivation of Dresselhaus spin-splitting Hamiltonian applicable for any curvilinear 1D-structures. The simple examples for the cases of quantum wire (QWr) and quantum ring (QR) defined in usual [001]-grown 2D-structure are presented.
About the authors
I. A. Kokurin
Institute of Physics and Chemistry, Mordovia State University; Ioffe Institute; St. Petersburg Electrotechnical University “LETI”
							Author for correspondence.
							Email: kokurinia@math.mrsu.ru
				                					                																			                												                	Russian Federation, 							Saransk, 430005; St. Petersburg, 194021; St. Petersburg, 197022						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					