On Derivation of Dresselhaus Spin-Splitting Hamiltonians in One-Dimensional Electron Systems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Two-dimensional (2D) semiconductor structures of materials without inversion center (e.g. zinc-blende AIIIBV) possess the zero-field conduction band spin-splitting (Dresselhaus term), which is linear and cubic in wavevector k, that arises from cubic in k splitting in bulk material. At low carrier concentration the cubic term is usually negligible. However, if we will be interested in the following dimensional quantization (in 2D plane) and the character width in this direction is comparable with the width of 2D-structure, then we have to take into account k3-terms as well (even at low concentrations), that after quantization leads to comparable contribution that arises from k-linear term. We propose the general procedure for derivation of Dresselhaus spin-splitting Hamiltonian applicable for any curvilinear 1D-structures. The simple examples for the cases of quantum wire (QWr) and quantum ring (QR) defined in usual [001]-grown 2D-structure are presented.

Об авторах

I. Kokurin

Institute of Physics and Chemistry, Mordovia State University; Ioffe Institute; St. Petersburg Electrotechnical University “LETI”

Автор, ответственный за переписку.
Email: kokurinia@math.mrsu.ru
Россия, Saransk, 430005; St. Petersburg, 194021; St. Petersburg, 197022

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).