Effect of Deep Centers on Charge-Carrier Confinement in InGaN/GaN Quantum Wells and on LED Efficiency


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The deep-center-assisted tunneling of carriers in p–n structures of light-emitting diodes (LEDs) with InGaN/GaN quantum wells (QWs) makes smaller the effective height of the injection barrier, but leads to a dependence of the radiation efficiency on the density and energy spectrum of defects in GaN. In the case of hopping conduction across the space charge region, the forward voltage mainly drops near the QW boundary, where the density of deep states at the quasi Fermi-level is the lowest. As a result, band bending at the boundary decreases, and, with increasing current, the direction of the electric field also changes, which leads to a weaker confinement of holes, to their non-radiative recombination in the n barrier, and to an efficiency droop. The low efficiency of green GaN LEDs is associated with the dominance of deep centers and insufficient density of shallow centers in the energy spectrum of defects in barrier layers near the boundaries with the QW. The proposed model is confirmed by the stepwise experimental dependences of the current, capacitance and efficiency of green and blue LEDs in the case of forward bias, which reflect the contribution of color centers responsible for the defect photoluminescence bands in GaN.

About the authors

N. I. Bochkareva

Ioffe Institute

Email: y.shreter@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

Y. G. Shreter

Ioffe Institute

Author for correspondence.
Email: y.shreter@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies