Matrix-type effect on the magnetotransport properties of Ni–AlO and Ni–NbO composite systems


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the insulating-matrix material on the electronic and magnetic properties of nanocomposites is investigated in the Nix(Al2O3)100–x metal–insulator system and the Nix(Nb2O5)100–x metal–semiconductor system. It is established that the characteristics of composites determined by electron transport through the matrix (the electrical resistivity, the position of the electrical percolation threshold, the magnetoresistance effect) depend on the material type. Replacement of the matrix from Al2O3 to Nb2O5 results in a decrease in the electrical resistivity by two–three orders of magnitude, a decrease in the magnetic resistivity by more than an order of magnitude, and in displacement of the percolation threshold from 40 to 30 at % of Ni. In this case, the magnetic properties of the composites are independent of the type of matrix: the concentration of the magnetic percolation threshold is identical in the two systems (~45 at % of Ni), and the coercive force of the samples occurring beyond the percolation threshold is close in magnitude (5–8 and 12–18 Oe) in the Nix(Nb2O5)100–x and Nix(Al2O3)100–x composites, respectively.

About the authors

O. V. Stognei

Voronezh State Technical University

Author for correspondence.
Email: sto@sci.vrn.ru
Russian Federation, Voronezh, 394026

A. J. Maliki

Voronezh State Technical University; University of Basra

Email: sto@sci.vrn.ru
Russian Federation, Voronezh, 394026; Basra, 61001b

A. A. Grebennikov

Voronezh State Technical University

Email: sto@sci.vrn.ru
Russian Federation, Voronezh, 394026

K. I. Semenenko

Voronezh State Technical University

Email: sto@sci.vrn.ru
Russian Federation, Voronezh, 394026

E. O. Bulovatskaya

Voronezh State Technical University

Email: sto@sci.vrn.ru
Russian Federation, Voronezh, 394026

A. V. Sitnikov

Voronezh State Technical University

Email: sto@sci.vrn.ru
Russian Federation, Voronezh, 394026


Copyright (c) 2016 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies