Formation of ncl-Si in the Amorphous Matrix a-SiOx:H Located near the Anode and on the Cathode, Using a Time-Modulated DC Plasma with the (SiH4–Ar–O2) Gas Phase (\({{{\text{C}}}_{{{{{\text{O}}}_{2}}}}}\) = 21.5 mol %)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation of ncl-Si in the amorphous matrix a-SiOx:H using a time-modulated DC plasma at an elevated oxygen content of \({{C}_{{{{{\text{O}}}_{2}}}}}\) = 21.5 mol % in a gas mixture of (SiH4–Ar–O2) is investigated. Plasma modulation implies the repeated (n = 180) switching on (for ton = 5, 10, 15 s) and switching off (for toff = 5, 10, 15 s) of the magnet coil of the DC magnetron. The effect of self-induction is used to enhance the processes of SiH4 dissociation, the formation of Si nanoparticles, and the ionization of oxygen and ncl-Si flows towards the electrodes. The samples are located both on an electrically isolated substrate holder near the anode and on the cathode (beyond its erosion zone). These experiments show that the shape of the dependences of the photoluminescence intensity \(I_{{{\text{PL}}}}^{{ncl - {\text{Si}}}}\) on the wavelength Λ are identical for all pairs of samples on the anode and cathode. When the ton value is small (ton = 5 s), the difference in the sample location only slightly affects the infrared (IR) spectra. At longer times ton (≥10 s) and a short time toff (5 s), the amorphous matrix located on the cathode is enriched with oxygen (as compared with that near the anode). The optimal plasma-modulation parameters are found to be toff/ton = 5, 10, 15/10 and toff/ton = 5, 10/15; under these conditions, the amorphous matrix has a “perfect structure” and is transparent to radiation, and the \(I_{{{\text{PL}}}}^{{ncl - {\text{Si}}}}\) value is the largest in the range λ ≈ 0.75–0.9 μm.

作者简介

Yu. Undalov

Ioffe Institute

编辑信件的主要联系方式.
Email: undalov@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

E. Terukov

Ioffe Institute; St. Petersburg Electronic University “LETI”

Email: undalov@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021; St. Petersburg, 197376

I. Trapeznikova

Ioffe Institute

Email: undalov@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021


版权所有 © Pleiades Publishing, Ltd., 2019
##common.cookie##