Quantum-well charge and voltage distribution in a metal–insulator–semiconductor structure upon resonant electron Tunneling


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The prerequisites for electron storage in the quantum well of a metal–oxide–p+-Si resonant-tunneling structure and the effect of the stored charge on the voltage distribution are theoretically investigated. Systems with SiO2, HfO2, and TiO2 insulators are studied. It is demonstrated that the occurrence of a charge in the well in the case of resonant transport can be expected in structures on substrates with an acceptor concentration from (5–6) × 1018 to (2–3) × 1019 cm–3 in the range of oxide thicknesses dependent on this concentration. In particular, the oxide layer thickness in the structures with SiO2/p+-Si(1019 cm–3) should exceed ~3 nm. The electron density in the well can reach ~1012 cm–2 and higher. However, the effect of this charge on the electrostatics of the structure becomes noticeable only at relatively high voltages far above the activation of resonant transport through the first subband.

作者简介

M. Vexler

Ioffe Physical–Technical Institute

编辑信件的主要联系方式.
Email: vexler@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021

Yu. Illarionov

Ioffe Physical–Technical Institute; Technische Universität Wien

Email: vexler@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021; Gußhausstr. 29, Vienna, A-1040

I. Grekhov

Ioffe Physical–Technical Institute

Email: vexler@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021


版权所有 © Pleiades Publishing, Ltd., 2017
##common.cookie##