Analysis of the Switching Characteristics of MRAM Cells Based on Materials with Uniaxial Anisotropy


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Magnetoresistive random access memory (MRAM) has some advantages over other types of memory. However, MRAM has one substantial drawback: the current density and magnetic field that must be applied to switch the spin-valve free layer inside an MRAM cell are too high. The dependence of the current density and switching magnetic field on the magnetic parameters of the material from which the ferromagnetic layers of a spin valve are fabricated is therefore analyzed. A comparison of the critical characteristics of a spin valve with longitudinal anisotropy shows that cobalt, iron, and alloys of them; cobalt ferroborates; and alloys of cobalt with gadolinium, are promising materials for fabricating spin valves. Bifurcation diagrams of equations that describe the valve switching process are presented and analyzed. The four optimum switching modes of a valve are selected, based on an investigation of the dynamics of the magnetization vector. The magnitudes of the external magnetic field and controlling injection current that correspond to stable MRAM cell switching are compared for a variety of materials. The switching time of an MRAM cell is estimated numerically, and the conditions for its optimum speed are determined. It is established that the most promising materials for spin-valve fabrication are Fe40Co40B20 and Co80Gd20, annealed at 300 and 200°C, respectively.

Об авторах

Iu. Iusipova

National Research University of Electronic Technology (MIET); Institute for Design Problems in Microelectronics, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: linda_nike@mail.ru
Россия, Moscow, 124498; Moscow, 124681

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).