Ultrasonic-Assisted Exfoliation of Graphitic Carbon Nitride and its Electrocatalytic Performance in Process of Ethanol Reforming


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Graphitic carbon nitride was synthesized via thermolysis of urea and then ultrasonic exfoliated from colloidal solution to obtain phase pure ultrafine powder of g-C3N4. It was shown that ultrasonic-assisted exfoliation of the initial graphitic carbon nitride powder leads to an increase in its phase purity (PXRD), a change in the morphology (SEM), a decrease in the band gap from 2.93 eV to 2.85 eV (DRS) and an increase in the specific surface from 58.6 m2/g to 136.7 m2/g (BET). In addition, it was found that the exfoliated g-C3N4 is an effective catalyst for the process of electrocatalytic reforming – the hydrogen evolution from the water-alcohol solution. Based on volamperometry, it was found that the hydrogen overpotential of graphitic carbon nitride is equal to 249 mV (at 10 mA/cm2), and the Taffel slope is 112 mV/dec. The results of cyclic voltammetry of the electrode based on exfoliated g-C3N4 indicate its high stability, which allows us to consider the exfoliated graphitic carbon nitride as a promising basis of materials for electrocatalytic reforming of alcohols.

Sobre autores

M. Chebanenko

Ioffe Institute

Autor responsável pela correspondência
Email: m_chebanenko@list.ru
Rússia, St. Petersburg, 194021

N. Zakharova

Saint-Petersburg State Institute of Technology

Email: m_chebanenko@list.ru
Rússia, St. Petersburg, 190013

A. Lobinsky

Saint-Petersburg State University

Email: m_chebanenko@list.ru
Rússia, St. Petersburg, 199034

V. Popkov

Ioffe Institute

Email: m_chebanenko@list.ru
Rússia, St. Petersburg, 194021


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies