Determining the Concentration of Free Electrons in n-InSb from Far-Infrared Reflectance Spectra with Allowance for Plasmon–Phonon Coupling


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Contactless nondestructive testing is a means for determining the concentration of free electrons N in indium antimonide (InSb) samples from far-infrared reflectance spectra recorded at room temperature. A computer program capable of determining the characteristic wave number from the Kramers–Kronig relation is developed. The calculated calibration dependence makes it possible to determine the electron concentration from the known characteristic wave number. It is shown that this dependence is described by a cubic polynomial. In the calculations, the energy dependence of the electron effective mass is taken into account. It is established that, in determining the electron concentration, account must be taken of plasmon–phonon coupling, specifically at N ≤ 5 × 1017 cm–3. The systematic error introduced into the determination of N by disregard of plasmon–phonon coupling is estimated. The software elaborated here makes it possible to calculate the electron concentration N from experimental reflectance spectra and to store and process the results. The software is tested by the example of the reflectance spectrum of heavily doped n-InSb.

About the authors

I. M. Belova

Moscow Technological University

Email: aplysenko@hse.ru
Russian Federation, Moscow, 117292

A. G. Belov

AO Giredmet

Email: aplysenko@hse.ru
Russian Federation, Moscow, 119017

V. E. Kanevsky

AO Giredmet

Email: aplysenko@hse.ru
Russian Federation, Moscow, 119017

A. P. Lysenko

National Research University Higher School of Economics

Author for correspondence.
Email: aplysenko@hse.ru
Russian Federation, Moscow, 101000


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies