Electrochemical lithiation of silicon with varied crystallographic orientation
- 作者: Astrova E.V.1, Rumyantsev A.M.1, Li G.V.1, Nashchekin A.V.1, Kazantsev D.Y.1, Ber B.Y.1, Zhdanov V.V.1
-
隶属关系:
- Ioffe Physical–Technical Institute
- 期: 卷 50, 编号 7 (2016)
- 页面: 963-969
- 栏目: Physics of Semiconductor Devices
- URL: https://journals.rcsi.science/1063-7826/article/view/197492
- DOI: https://doi.org/10.1134/S1063782616070022
- ID: 197492
如何引用文章
详细
The anisotropy of lithium intercalation into the silicon anodes of Li-ion batteries is studied on microstructures having the form of a grid with 0.5-μm-thick vertical walls and on silicon wafers of varied orientation. Electrochemical lithiation is performed at room temperature in the galvanostatic mode. The charging curves of the microstructure and flat Si anodes are examined. Secondary-ion mass spectroscopy is used to determine the distribution of intercalated Li atoms across the wafer thickness. The experimental data are analyzed in terms of the two-phase model in which the lithiation process is limited by the propagation velocity of the front between the amorphous alloy with a high Li content and the crystalline Si substrate. The relationship between the rates of Li intercalation into different crystallographic planes: (110), (111), and (100), is found to be V110: V111: V100 = 3.1: 1.1: 1.0. It is demonstrated that microstructure anodes with (110) walls have the highest cycle life and withstand ~600 cycles when charged and discharged at a rate of 0.36 C.
作者简介
E. Astrova
Ioffe Physical–Technical Institute
编辑信件的主要联系方式.
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
A. Rumyantsev
Ioffe Physical–Technical Institute
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
G. Li
Ioffe Physical–Technical Institute
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
A. Nashchekin
Ioffe Physical–Technical Institute
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
D. Kazantsev
Ioffe Physical–Technical Institute
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
B. Ber
Ioffe Physical–Technical Institute
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
V. Zhdanov
Ioffe Physical–Technical Institute
Email: east@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
补充文件
