Features of the Initial Stage of the Heteroepitaxy of Silicon Layers on Germanium When Grown from Silicon Hydrides


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Data on the dependence of the growth rate of Si layers deposited onto Ge(111) by the hydride method on their thickness at the initial heteroepitaxy stage are reported. The effect of a Ge substrate within ten grown silicon single layers on the Si-film growth rate is demonstrated. Based on the data obtained, the kinetic coefficients responsible for the rate of the main physicochemical processes related to the interaction of hydride molecular beams with the growth surface are calculated. An analysis of the capture probability and rates of pyrolysis of the adsorbed Si(Ge) hydride molecules on the pure Ge(Si) surfaces reveals the dependence of their behavior on the growing-layer thickness. Comparison of the results obtained during Si-layer growth on Ge shows that the pure germanium surface has higher adsorption and catalytic abilities with respect to silane molecules than the pure Si surface. The unstrained pure Si surface has higher adsorption and catalytic characteristics with respect to Ge-hydride molecules.

About the authors

L. K. Orlov

Alexeev Nizhny Novgorod State Technical University; Institute of Applied Physics, Russian Academy of Sciences

Author for correspondence.
Email: orlov@imp.sci-nnov.ru
Russian Federation, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950

N. L. Ivina

Russian Presidential Academy of National Economy and Public Administration

Email: orlov@imp.sci-nnov.ru
Russian Federation, Nizhny Novgorod, 603950

V. A. Bozhenkin

Lobachevskii Nizhny Novgorod State University, Physicotechnical Research Institute

Email: orlov@imp.sci-nnov.ru
Russian Federation, Nizhny Novgorod, 603950


Copyright (c) 2019 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies