Metamorphic mineral reactions and mineral paragenesis in the rocks of the Meyeri tectonic zone (the south-eastern part of the Fennoscandian shield, Russia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mineral reactions were studied in metamorphic rocks from the Meyeri tectonic zone, and the P–T path of the development of this structure was calculated. According to the P–T path, the Proterozoic granulite complex of the Svecofennian Belt was thrust onto low-temperature rocks of the Archean Karelian Craton’s margin. Relict staurolite and other minerals preserved as inclusions in the garnet porphyroblasts made it possible to identify P–T parameters of the pre-peak stage of metamorphism using the compositions of the relict minerals. The temperature on the prograde trend of metamorphism was 500–600°C at a pressure of about 5 kbar. The peak metamorphic conditions of the Meyeri tectonic zone are estimated at T > 700°C and P ~ 7 kbar. The post-peak stage began with a decompressional P–T path at the aforementioned temperatures, with a change from granulite hypersthene-containing paragenesis to lower-temperature amphibole-containing ones. The subsequent metamorphic retrogression was characterized by the development of numerous hydrous minerals as a result of the activation of fluids in the shear zone. The P–T path of the tectonic zone is clockwise and reflects the exhumation of the Svecofennian granulite complex during the orogenic events.

Full Text

Restricted Access

About the authors

Emiliia S. Vivdich

Institute of Precambrian Geology and Geochronology; St. Petersburg State Mining University

Author for correspondence.
Email: emily.vivdich@yandex.ru

геологоразведочный факультет

Russian Federation, Sankt-Peterburg; Sankt-Peterburg

Kaimovich K. Baltybaev

Institute of Precambrian Geology and Geochronology; St. Petersburg State University

Email: shauket@mail.ru

Институт наук о Земле

Russian Federation, Sankt-Peterburg; Sankt-Peterburg

Olga L. Galankina

Institute of Precambrian Geology and Geochronology

Email: galankinaol@mail.ru
Russian Federation, Sankt-Peterburg

References

  1. Berman R.G. Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2 // J. Petrol. 1988. V. 29. № 2. P. 445–522. https://doi.org/10.1093/petrology/29.2.445
  2. Berman R.G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications // Canad. Mineral. 1991. V. 29. № 4. P. 833–855.
  3. Berman R.G. WinTWQ (version 2.3): A software package for performing internally-consistent thermobarometric calculations // Geol. Surv. Canada. 2007. Open File 5462 (revised). https://doi.org/10.4095/223228
  4. Berman R.G., Aranovich L.Y. Optimized standard state and solution properties of minerals: 1. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–A12O3–TiO2–SiO2 // Contrib. Mineral. Petrol. 1996. V. 126. P. 1–24.
  5. Berman R.G., Aranovich L. Ya., Rancourt D.G., Mercier D.G. Reversed phase equilibrium constraints on the stability of Mg – Fe – Al biotite // Amer. Mineral. 2007. V. 92. № 1. P. 139–150. https://doi.org/10.2138/am.2007.2051
  6. Connolly J.A. Multivariable phase–diagrams – an algorithm based on generalized thermodynamics // Amer. J. Sci. 1990. V. 290. P. 666–718.
  7. Escuder Viruete J., Indares A., Arenas R. P-T paths derived from garnet growth zoning in an extensional setting: An example from the Tormes Gneiss Dome (Iberian Massif, Spain) // J. Petrol. 2000. V. 41. P. 1489–1515.
  8. Escuder Viruete J., Indares A., Arenas R. P-T path determinations in the Tormes Gneissic Dome, NW Iberian Massif, Spain // J. Metamorph. Geol. 1997. V. 15. P. 645–663.
  9. Eskola P.E. The problem of mantled gneiss domes // Geol. Soc. London Quart. J. 1949. V. 104. Pt. 4. P. 461–476.
  10. Holland T.J.B. Powel R. An internally-consistent thermodynamic dataset for phases of petrological interest // J. Metamorph. Geol. 1998. V. 16. P. 309–344.
  11. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383.
  12. Holdaway M.J. Stability of andalusite and the aluminum silicate phase diagram // Amer. J. Sci. 1971. V. 271. P. 97–131.
  13. Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // Amer. Mineral. 2000. V. 85. P. 881–892.
  14. Hollister L.S. The reaction forming cordierite from garnet, the Khtada Lake metamorphic complex, British Columbia // Canad. Mineral. 1977. V. 15. P. 217–229.
  15. Konopelko D., Eklund O. Timing and geochemistry of potassic magmatism in the eastern part of the Svecofennian domen, NW Ladoga lake region, Russian Karelia // Pecambr. Res. 2003. V. 120. P. 37–53.
  16. Petrakakis K. Metamorphism of high‐grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets // J. Metamorph. Geol. 1986. V. 4. P. 323–344.
  17. Prasad S.B., Bhattacharya A.K., Raith M.M., Bhadra S. The origin of orthopyroxene/biotite + plagioclase coronas from the Bolangir anorthosite complex (India), and implications for reconstructing P-T paths // Amer. Mineral. 2005. V. 90. P. 291–303.
  18. Suda Y., Shin-ichi K., Madhusoodhan S-K. et al. Geochemistry of mafic metamorphic rocks in the Lutzow-Holm Complex, East Antarctica: Implications for tectonic evolution // Polar Geosci. 2006. V. 19. P. 62–88.
  19. Stüwe K., Oliver R.L. Geological history of Adélie Land and King George V Land, Antarctica: Evidence for a polycyclic metamorphic evolution // Precambr. Res. 1989. V. 43. P. 317–334.
  20. Tong L., Wilson C.J.L. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica // Precambr. Res. 2006. V. 149. P. 1–20.
  21. Van der Wal D., Vissers R.L.M. Structural petrology of the ronda peridotite, SW Spain: deformation history // J. Petrol. 1996. V. 37. P. 23–43.
  22. Villaseca C., Downes H., Pin C., Barbero L. Nature and composition of the lower continental crust in Central Spain and the granulite–granite linkage: inferences from granulitic xenoliths // J. Petrol. 1999. V. 40. P. 1465–1496.
  23. Vrána S. Perpotassic granulites from southern Bohemia. A new rock type derived from partial melting of crustal rocks under upper mantle conditions // Contrib. Mineral. Petrol. 1989. V. 103. P. 510–522.
  24. White R., Powell R., Johnson T. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals // J. Metamorph. Geol. 2014. V. 32. № 8. P. 261–286.
  25. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.
  26. Wu C.M. Revised empirical garnet-biotite-muscoviteplagioclase geobarometer in metapelites // J. Metamorph. Geol. 2015. V. 33. P. 167–176.
  27. Wu C.M., Zhang J., Ren L.D. Empirical garnet-biotiteplagioclase-quartz (GBPQ) geobarometry in medium to high-grade metapelites // J. Petrol. 2006. V. 45. № 9. P. 1907–1921.
  28. Zhao G.C., Wilde S.A., Cawood P.A., Lu L.Z. Petrology and P-T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China craton // J. Metamorph. Geol. 2000. V. 18. № 4. Р. 375–391.
  29. Zhao G. Palaeoproterozoic assembly of the North China Craton // Geol. Magaz. 2001. V. 138. P. 87–91.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The scheme of the geological structure of the Meyer tectonic zone area. 1-4 (in the inset): 1 – the Archean basement within the Karelian craton and its fragments; 2 – Paleoproterozoic shales and gneisses; 3 – the main suture of the Raakhe-Ladoga zone; 4 – the studied area of the Meyer tectonic zone. 5 – Archean granite-gneiss; 6-10 – Paleoproterozoic amphibolites, shales and gneisses of the Sortavala, Ladoga and Lahdenpoh series: 6 – early Proterozoic, metabasites (amphibolites) of the Sortavala series, 7, 8 – Ladoga series: 7 – muscovite, stavrolite shales, 8 – muscovite-biotite, garnet gneisses, 9, 10 – Lahdenpoh series: 9 – garnet-cordierite, garnet-biotite gneisses and migmatites, 10 – hyperstene gneisses; 11-13 – Svecofennian intrusions: 11 – synorogenic Kurkiek complex 1.89–1.88 billion years (norites, enderbites), 12 – synorogenic Lauvatsar-Impiniem complex 1.88–1.87 billion years (early phase: gabbro, diorites, quartz diorites; late phase: tonalites), 13 – late rhogenic potassium granites undifferentiated 1.87–1.80 billion years; 14 – position of the main displacement of the tectonic zone: a – established, b – assumed; 15 – faults: a – established, b – assumed; 16-19 ‒ orientation of shale and gneiss: 16 – subvertical (70°-90°), 17 – steeply falling (50°-70°), 18 – gently falling (30°-50°), 19 – subhorizontal (0°-30°); 20 – location of outcrops, samples of which: a – used in R-T-metry, b – other; the numbers indicate the sample numbers: 1-12 – autochthonous block (1 – 5442a, 2 – 5267a, 3 – B-20-455-2 , 4 – B-20-454, 5 – 996-1, 6 – 994-1, 7 – B-20-425, 8 – B-20-458, 9 – B-20-464, 10 – B-20-461, 11 – B-20-417, 12 – 4098b), 13-26 – allochthonous block (13 – 5445, 14– 5444a, 15 – 5785, 16 – B-20-436, 17 – B-20-435, 18 – B-20-433, 19 – B-20-427, B-20-427-1 , 20 – B-20-466, 21 – B-20-441, 22 – 2465v, 23 – B-20-439, 24 – B-20-450, 25 – B-20-448, 26 – 5206b). An incision along the A–B line.

Download (834KB)
3. Рис. 1. Схема геологического строения района тектонической зоны Мейера. 1-4 (на врезке): 1 – архейский фундамент в пределах Карельского кратона и его фрагментов; 2 – палеопротерозойские сланцы и гнейсы; 3 – основной шов Раахе-Ладожской зоны; 4 – изученный район тектонической зоны Мейера. 5 – Архейский гранит-гнейс; 6-10 – палеопротерозойские амфиболиты, сланцы и гнейсы Сортавальской, Ладожской и Лахденпохской серий: 6 – раннепротерозойские, метабазиты (амфиболиты) Сортавальской серии, 7, 8 – Ладожская серия: 7 – мусковитовые, ставролитовые сланцы, 8 – мусковит-биотитовые, гранатовые гнейсы, 9, 10 – Лахденпохская серия: 9 – гранат-кордиеритовые, гранат-биотитовые гнейсы и мигматиты, 10 – гиперстеновые гнейсы; 11-13 – свекофеннские интрузии: 11 – синорогенный куркиекский комплекс 1,89–1,88 млрд. лет (нориты, эндербиты), 12 – синорогенный лаувацар-Импиниемский комплекс 1,88–1,87 млрд. лет (ранняя фаза: габбро, диориты, кварцевые диориты; поздняя фаза: тоналиты), 13 – позднегенные калиевые граниты недифференцированные 1,87–1,80 миллиард лет; 14 – положение основного смещения тектонической зоны: а – установлено, б – предполагается; 15 – разломы: а – установлены, в – предполагаются; 16-19 ‒ ориентация сланцев и гнейсов: 16 – субвертикальная (70°-90°), 17 – крутопадающая (50°-70°), 18 – пологопадающая (30°-50°), 19 – субгоризонтальная (0°-30°); 20 – расположение обнажений, образцы которых: а – используется в Р-Т-метрии, б – другое; цифры обозначают номера образцов: 1-12 – автохтонный блок (1 – 5442a, 2 – 5267a, 3 – B-20-455-2 , 4 – B-20-454, 5 – 996-1, 6 – 994-1, 7 – B-20-425, 8 – B-20-458, 9 – B-20-464, 10 – B-20-461, 11 – B-20-417, 12 – 4098b), 13-26 – аллохтонный блок (13 – 5445, 14– 5444a, 15 – 5785, 16 – B-20-436, 17 – B-20-435, 18 – В-20-433, 19– В-20-427, В-20-427-1 , 20 – В-20-466, 21 – В-20-441, 22 – 2465в, 23– В-20-439, 24 – В-20-450, 25 – B-20-448, 26 – 5206b). Сделайте разрез по линии А–В.

Download (1MB)
4. Fig. 3. BSE is an image of a garnet porphyroblast from model B-20-458 (autochthonous MTZ block) with a large number of mineral inclusions, including grains of stavrolite.

Download (508KB)
5. Fig. 4. Diagrams of the chemical composition of garnet (a, b), biotite (c, d), plagioclase (e, e) and stavrolite (w, h) from the studied rocks of the Meyer tectonic zone. The composition of rock minerals is shown with dots of different colors (1) allochthonous and (2) autochthonous MTZ blocks for rock groups (3-5): 3 – garnet-biotite, 4 – garnet-muscovite-biotite, 5 – high alumina. To compare the composition of the stavrolite of the invention B-20-458 autochthonous block MTZ (6) diagrams (w, h) show the composition of this mineral from the stavrolite shales of the Ladoga series (7), distributed north of MTZ.

Download (511KB)
6. Fig. 5. BSE images of garnet porphyroblasts from samples, respectively, 5206b (a), B-20-427 (c), B-20-448 (e) and B-20-439 (g), as well as profiles (b, d, e, h) of content changes almandine (Alm), pyrope (Prp), spessartine (Sps) and grossular (Grs) through points whose numbers and locations are indicated on the grains; bold lines show the change in magnesia (XMg) of cordierite (b) and biotite (d) on contact with garnet.

Download (600KB)
7. Fig. 6. Micrographs of granite-muscovite-biotite gneiss sections of MTZ with signs of low–temperature reactions of formation of muscovite associations: (a, b) - model B-20-439 with intensive garnet substitution by quartz-muscovite–biotite aggregate; (c, d) - model B-20-425 with garnet substitution biotite, muscovite and quartz developing through cracks in a large porphyroblast of garnet; (d, e) – mod. B-20-433 low-temperature replacement of garnet with chlorite, most likely formed by biotite.

Download (1MB)
8. Fig. 7. Features of the chemical composition of a solid solution of ilmenite (a) with components: ilmenite (FeTiO3), pyrophanite (MnTiO3) and geikylite (MgTiO3); BSE-images of sections of transparently polished rock plates in which ilmenite (Ilm) and rutile (Rt) were found: (b) – mod. B-20-464, (c) – mod. B-20-455-2 .

Download (606KB)
9. Fig. 8. R-T conditions for the formation of relict stavrolite in garnet. (a) – the fields of stability of mineral parageneses calculated in the PERPLE_X program for model B-20-458; (b) – the field of stability of stavrolite and isoplets reflecting the content of pyrope, anorthite and XMg stavrolite; (c) – the change in the mineral composition of the rock with an increase in temperature at a pressure of 5 kbar; (d) – R-T parameters calculated in the THERMOCALC program based on relict compositions of stavrolite, garnet, plagioclase from mod. B-20-458. The list of reactions and their numbers are given in the Supplemental, ESM_9.xlsx .

Download (668KB)
10. Fig. 9. R–T diagrams for MTZ rocks with mineral parageneses of peak and regressive stages of mineral formation. The intersections of mineral reaction lines calculated in the winTWQ program for paragenesis are shown: (a) – garnet + biotite + plagioclase + quartz (mod. B-20-439); (b) – orthopyroxene + garnet + plagioclase + quartz (mod. 5444a); (c) – cordierite + garnet + biotite + plagioclase + quartz (mod. 5206b); (d) – amphibole + garnet + plagioclase + quartz (mod. 5444a). For amphibole-containing paragenesis, calculations were performed using the JUN92 database (Berman, 1988). The list of reactions and their numbers are given in the Supplemental, ESM_10.xlsx .

Download (413KB)
11. Fig. 10. R–T diagrams for muscovite-containing associations of MTZ rocks. The lines of mineral reactions obtained by multiequilibrium thermobarometry in winTWQ are shown for the parageneses: garnet + biotite + muscovite + quartz (mod. B-20-454 (a) and B-20-425 (b)); garnet + biotite + andalusite + muscovite + quartz (mod. 2465v (b) and mod. B-20-458 (d)). The list of reactions and their numbers are given in the Supplemental, ESM_11.xlsx .

Download (457KB)
12. Fig. 11. R–T diagrams for samples of garnet-muscovite-biotite gneiss MTZ: (a) – model 996-1, (b) – model 2465v. The lines of mineral reactions were calculated by the method of "classical" thermobarometry using garnet-biotite geothermometer (GB, Holdaway, 2000), garnet-biotite-plagioclase-quartz geobarometer (GBPQ, Wu et al., 2006) and garnet-biotite-muscovite-plagioclase geobarometer (GBMP, Wu, 2015).

Download (173KB)
13. Fig. 12. R–T diagrams constructed by the method of multiequilibrium thermobarometry for the paragenesis of garnet + + biotite + ilmenite + rutile + plagioclase + quartz from MTZ gneiss samples: (a) – B-20-464, (b) – B-20-455-2 . The list of reactions and their numbers are given in the Supplemental, ESM_12.xlsx .

Download (250KB)
14. Fig. 13. R-T trend in the development of metamorphic rocks of the Meyer tectonic zone. 1-7: areas and individual points of R-T estimates obtained by the method of “multiequilibrium" geothermobarometry for associations: 1 – relict stavrolite + garnet + plagioclase (mod. B-20-458); 2 – garnet + biotite + ilmenite + rutile + plagioclase + quartz (mod. B-20-464, B-20-455-2); 3 – garnet + orthopyroxene + plagioclase + biotite + quartz (5444a); 4 – cordierite + garnet + biotite + plagioclase + quartz (mod. 5205b); 5 – garnet + biotite + plagioclase + quartz (mod. B-20-439, B-20-427); 6 – garnet + biotite + muscovite ± andalusite + plagioclase + quartz (mod. B-20-454, B-20-425, 2465v, B-20-458); 7 – R-T regions obtained by crossing the lines of mineral reactions of garnet-biotite (GB), garnet-biotite-plagioclase (GBPQ) and garnet-biotite-muscovite-plagioclase (GBMP) equilibria; 8-9 – trends in metamorphism parameters for autochthonous (8) and allochthonous (9) blocks. The Roman numerals in the circles indicate the R-T equilibrium estimates for paragenesis: I – garnet + biotite + muscovite + cordierit1 (mod. B-20-458); II – garnet + amphibole + plagioclase + quartz (mod. 5444a); III – garnet + biotite + muscovite + plagioclase + andalusite + quartz (mod. mod. B-20-458); IV – garnet + biotite + muscovite + chlorite + plagioclase + quartz (mod. mod. B-20-433). The triple point of Al2SiO5 by (Holdaway, 1971).

Download (391KB)
15. Appendix ESM_1 - Table 1. Chemical composition of minerals (garnets)
Download (15KB)
16. Appendix ESM_8 - Table 8. Chemical composition of minerals (ilmenite)
Download (11KB)
17. Appendix ESM_12 - Table 12. List of used mineral reactions (fig. 12a-12b)
Download (9KB)
18. Appendix - ESM_9 - Table 9. List of used mineral reactions (fig. 8g)
Download (9KB)
19. Appendix ESM_2 - Table 2. Chemical composition of minerals (biotite)
Download (14KB)
20. Appendix - ESM_3 - Table 3. Chemical composition of minerals (muscovite)
Download (12KB)
21. Appendix ESM_4 - Table 4. Chemical composition of minerals (plagioclase)
Download (12KB)
22. Appendix ESM_5 - Table 5. Chemical composition of minerals (stavrolite)
Download (10KB)
23. Приложение - ESM_3 - Table 3. Химический состав минералов (ортопироксен)
Download (11KB)
24. Appendix ESM_7 - Таблица 7. Chemical composition of minerals (cordierite)
Download (13KB)
25. Appendix ESM_10 - Таблица 10. List of used mineral reactions (fig. 9a-9g)
Download (10KB)
26. Appendix ESM_11 - Table 11. List of used mineral reactions (fig. 10a-10g)
Download (10KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies