On the correctness of the model description of the plasma composition in the mixture of SF 6 + He + O 2
- 作者: Myakonkikh A.V.1, Kuzmenko V.O.1, Efremov A.M.1,2, Rudenko K.V.1
-
隶属关系:
- NRC “Kurchatov Institute” – K.A. Valiev IPT
- JSC “Molecular Electronics Research Institute”
- 期: 卷 54, 编号 5 (2025)
- 页面: 381-392
- 栏目: МОДЕЛИРОВАНИЕ
- URL: https://journals.rcsi.science/0544-1269/article/view/353908
- DOI: https://doi.org/10.7868/S3034548025050047
- ID: 353908
如何引用文章
详细
关键词
作者简介
A. Myakonkikh
NRC “Kurchatov Institute” – K.A. Valiev IPT
Email: miakonkikh@ftian.ru
Moscow, Russia
V. Kuzmenko
NRC “Kurchatov Institute” – K.A. Valiev IPTMoscow, Russia
A. Efremov
NRC “Kurchatov Institute” – K.A. Valiev IPT; JSC “Molecular Electronics Research Institute”Moscow, Russia; Zelenograd, Russia
K. Rudenko
NRC “Kurchatov Institute” – K.A. Valiev IPTMoscow, Russia
参考
- Wolf S., Tauber R.N . Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press, New York. 2000. 416 p.
- Nojiri K . Dry etching technology for semiconductors. Springer International Publishing, Tokyo. 2015. 116 p.
- Красников Г. Я. Возможности микроэлектронных технологий с топологическими размерами менее 5 нм // Наноиндустрия, 2020, т. 13, № S5–1(102), c. 13–19.
- Lieberman M.A., Lichtenberg A.J . Principles of plasma discharges and materials processing, New York, John Wiley & Sons Inc. 2005. 757 p.
- Standaert T.E.F.M., He dlund C., Joseph E .A., Oehr - lein G.S., Dalton T.J . Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A, 2004, vol. 22, pp. 53.
- Kastenmeier B.E.E., Matsuo P.J., O ehrlein G.S . Highly selective etching of silicon nitride over silicon and silicon dioxide // J. Vac. Sci. Technol. A, 1999, vol. 17, pp. 3179.
- Schaepkens M., Standaert T.E .F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J. M . Study of the SiO 2 -to-Si 3 N 4 etch selectivity mechanism in inductively coupled flu orocarbon plasmas an d a comparison with the S iO 2 -to-Si mechanism // J. Vac. Sci. Technol. A, 1999, vol. 17, pp. 26.
- Yoon S.F . Dry etching of thermal SiO 2 using SF 6 -based plasma for VLSI fabrication // Microelectronic Engineering, 1991, vol. 14, pp. 23.
- Arora P., Nguyen T., Chawla A., Nam S.-K ., and Donnelly V.M . Role of sulfur in catalyzing fluorine atom fast etching of silicon with smooth surface morphology // J. Vac. Sci. Technol. A, 2019, vol. 37(6), pp. 061303.
- Han G., Murata Y., Minami Y., Sohgawa M., and Abe T . Thermal Reactive Ion Etching of Minor Metals with SF 6 Plasma // Sensors and Materials, 2017, vol. 29(3), pp. 217.
- Park J.H., Lee N.-E., Lee J., Park J.S., Park H.D . Deep dry etching of borosilicate glass using SF 6 and SF 6 /Ar inductively coupled plasmas // Microelectronic Engineering, 2005, vol. 82, pp. 119.
- Yoon S.F . Dry etching of thermal SiO 2 using SF 6 -based plasma for VLSI fabrication // Microelectronic Engineering, 1991, vol. 14, pp. 23.
- Oehrlein G.S. et al . Future of plasma etching for microelectronics: Challenges and opportunities // J. Vac. Sci. Technol. B, 2024, vol. 42, pp. 041501.
- Osipov A.A ., Iankevich G.A., Berezenko V.I., Endiiarova E.V . Influence of operation parameters on BOSCH-process technological characteristics // Materials Today: Proceedings, 2020. Vol. 30. No. 3. pp. 599.
- Dussart R., Tilloc her T., Lefaucheux P., Boufnichel M ., Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies // J. Phys. D: Appl. Phys . 2014, vol. 47, pp. 123001.
- Kokkoris G., Panagiotopoulos A., Goodyear A., Cooke M., Gogolides E . A global model for SF 6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls // J. Phys. D: Appl. Phys . , 2009, vol. 42, pp. 055209.
- Haidar Y., Pateau A., Rhallabi A. et al . SF 6 and C 4 F 8 global kinetic models coupled to sheath models // Plasma Sources Sci. Technol., 2014, vol. 23, pp. 065037.
- Myakonkikh A.V., Kuzmenko V.O ., Efremov A.M., Rudenko K. V . Gas Phase Composition and Kinetics of Fluorine Atoms in SF 6 Plasma // Russian Microelectronics . 2024, Vol. 53. No. 6. pp. 582–591.
- Mao M., Wang Y.N., Bogaerts A ., Numerical study of the plasma chemistry in inductively coupled SF 6 and SF 6 /Ar plasmas used for deep silicon etching applications // J. Phys. D: Appl. Phys . 2011, vol . 44, pp. 435202.
- Lallement L., Rhallabi A., Cardinaud C., Peignon-Fernandez M.C., Alves L.L . Global model and diagnostic of a low-pressure SF 6 /Ar inductively coupled plasm а // Plasma Sources Sci. Technol . 2009. V. 18. P. 025001 (1–10).
- Yang W., Zhao S.-X. , Wen D.-Q., Liu W., Liu Y.-X., Li X.-C ., and Wang, Y.-N. F-atom kinetics in SF 6 /Ar inductively coupled plasmas // J. Vac. Sci. Technol. A, 2016, vol. 34(3), pp. 031305.
- Ryan K.R., Plumb I.C . A model for the etching of silicon in SF 6 /O 2 plasmas, Plasma Chem. // Plasma Proc., 1990, vol. 10(2), pp. 207–229.
- Pateau A., Rhallabi A., Fernandez M.-C., B oufnichel M., Roque ta F . Modeling of inductively coupled plasm a SF 6 /O 2 /Ar plasma d ischarge: Effect of O 2 on the plasma kinetic prope rties // J. Vac. Sci. Technol. A., 2014, vol. 32, pp. 021303(1–10) .
- Efremov A., Lee J., Kim J ., On the control of plasma parameters and active species kinetics in CF 4 +O 2 +Ar gas mixture by CF 4 /O 2 and O 2 /Ar mixing ratios // Plasma Chem. Plasma Process . 2017. V. 37. pp. 1445–1462.
- Efremov A., Lee B. J., Kwon K.-H . On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO 2 and Si x N y ) in multi-component fluorocarbon gas mixtures // Materials, 2021. Vol. 14. pp. 1432(1–27).
- Miakonkikh A., Kuzmenko V., Efremov A., Rudenko K . Parameters and composition of plasma in a CF 4 + H 2 + + Ar gas mixture: Effect of CF 4 /H 2 ratio // Russian Microelectronics, 2024. Vol. 53. No. 1. pp. 70–78.
- Miakonkikh A., Kuzmenko V., Efremov A., Rudenko K . On Relationships between Gas-Phase and Heterogeneous Process Kinetics in CF 4 + H 2 + Ar Plasma // Vacuum . 2025. Vol. 234. pp. 114044(1–13)
- Shun’ko E. V . Langmuir probe in theory and practice. Universal Publishers, Boca Raton. 2008. 245 p.
- Engeln R., K larenaar B., Guai tella O . Foundations of optical diagnostics in low-temperature plasmas // Plasma Sources Sci. Technol., 2020, vol. 29, pp. 063001.
- Lopaev D.V., Volynets A.V ., Zyryanov S.M., Zotovich A.I., Rakhimov A.T . Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys ., 2017, vol. 50, pp. 075202.
- Raju G.G . Gaseous electronics. Tables, Atoms and Molecules. CRC Press, Boca Raton. 2012. 790 p.
- Christophorou L.G. Olth off J.K. Fundamental electron interactions with plasma processing gases. Springer Science+Business Media LLC, New York. 2004. 776 p.
- Cunge G., Ramos R., Vempaire D. , Touzeau M., Neijba - uer M., Sadeghi N . Gas temperature measurement in CF 4 , SF 6 , O 2 , Cl 2 , and HBr inductively coupled plasmas // J. Vac. Sci. Technol . , 2009, vol. 27(3), pp. 471.
- Handbook of chemistry and physics, Boca Raton: CRC press, 1998.
- Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B . Comparison of model and experiment for Ar, Ar/O 2 and Ar/O 2 /Cl 2 inductively coupled plasmas // J. Phys. D: Appl. Phys ., 2006, vol. 39(15), pp. 3272–3284.
- Lee C., Lieberma n M.A . Global model of Ar, O 2 , Cl 2 , and Ar/O 2 high-density plasma discharges // J. Vac. Sci. Technol. A., 1995, vol. 13, pp. 368–380.
- Kota G.P., Coburn J.W ., Graves D.B . Heterogeneous recombination of atomic bromine and fluorine // J. Vac. Sci. Technol . A, 1999, vol. 17, pp. 282.
- Chantry P.J . A simple formula for diffusion calculations involving wall reflection and low density // J. Appl. Phys., 1987, vol. 62(4), pp. 1141.
补充文件

