On the correctness of the model description of the plasma composition in the mixture of SF 6 + He + O 2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comprehensive (experimental and model) study of the composition of the neutral and charged components of SF 6 + He + O 2 plasma was carried out with varying He/O 2 ratio. Key processes that form stationary concentrations of fluorine and oxygen atoms under conditions of excess fluorine-containing particles were identified. It was shown that the corrected (refined based on the results of recent studies and supplemented with previously unaccounted for processes) kinetic scheme ensures satisfactory agreement between the calculated atomic concentrations and the values obtained from the results of optical-spectral diagnostics of the plasma.

Sobre autores

A. Myakonkikh

NRC “Kurchatov Institute” – K.A. Valiev IPT

Email: miakonkikh@ftian.ru
Moscow, Russia

V. Kuzmenko

NRC “Kurchatov Institute” – K.A. Valiev IPT

Moscow, Russia

A. Efremov

NRC “Kurchatov Institute” – K.A. Valiev IPT; JSC “Molecular Electronics Research Institute”

Moscow, Russia; Zelenograd, Russia

K. Rudenko

NRC “Kurchatov Institute” – K.A. Valiev IPT

Moscow, Russia

Bibliografia

  1. Wolf S., Tauber R.N . Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press, New York. 2000. 416 p.
  2. Nojiri K . Dry etching technology for semiconductors. Springer International Publishing, Tokyo. 2015. 116 p.
  3. Красников Г. Я. Возможности микроэлектронных технологий с топологическими размерами менее 5 нм // Наноиндустрия, 2020, т. 13, № S5–1(102), c. 13–19.
  4. Lieberman M.A., Lichtenberg A.J . Principles of plasma discharges and materials processing, New York, John Wiley & Sons Inc. 2005. 757 p.
  5. Standaert T.E.F.M., He dlund C., Joseph E .A., Oehr - lein G.S., Dalton T.J . Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A, 2004, vol. 22, pp. 53.
  6. Kastenmeier B.E.E., Matsuo P.J., O ehrlein G.S . Highly selective etching of silicon nitride over silicon and silicon dioxide // J. Vac. Sci. Technol. A, 1999, vol. 17, pp. 3179.
  7. Schaepkens M., Standaert T.E .F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J. M . Study of the SiO 2 -to-Si 3 N 4 etch selectivity mechanism in inductively coupled flu orocarbon plasmas an d a comparison with the S iO 2 -to-Si mechanism // J. Vac. Sci. Technol. A, 1999, vol. 17, pp. 26.
  8. Yoon S.F . Dry etching of thermal SiO 2 using SF 6 -based plasma for VLSI fabrication // Microelectronic Engineering, 1991, vol. 14, pp. 23.
  9. Arora P., Nguyen T., Chawla A., Nam S.-K ., and Donnelly V.M . Role of sulfur in catalyzing fluorine atom fast etching of silicon with smooth surface morphology // J. Vac. Sci. Technol. A, 2019, vol. 37(6), pp. 061303.
  10. Han G., Murata Y., Minami Y., Sohgawa M., and Abe T . Thermal Reactive Ion Etching of Minor Metals with SF 6 Plasma // Sensors and Materials, 2017, vol. 29(3), pp. 217.
  11. Park J.H., Lee N.-E., Lee J., Park J.S., Park H.D . Deep dry etching of borosilicate glass using SF 6 and SF 6 /Ar inductively coupled plasmas // Microelectronic Engineering, 2005, vol. 82, pp. 119.
  12. Yoon S.F . Dry etching of thermal SiO 2 using SF 6 -based plasma for VLSI fabrication // Microelectronic Engineering, 1991, vol. 14, pp. 23.
  13. Oehrlein G.S. et al . Future of plasma etching for microelectronics: Challenges and opportunities // J. Vac. Sci. Technol. B, 2024, vol. 42, pp. 041501.
  14. Osipov A.A ., Iankevich G.A., Berezenko V.I., Endiiarova E.V . Influence of operation parameters on BOSCH-process technological characteristics // Materials Today: Proceedings, 2020. Vol. 30. No. 3. pp. 599.
  15. Dussart R., Tilloc her T., Lefaucheux P., Boufnichel M ., Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies // J. Phys. D: Appl. Phys . 2014, vol. 47, pp. 123001.
  16. Kokkoris G., Panagiotopoulos A., Goodyear A., Cooke M., Gogolides E . A global model for SF 6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls // J. Phys. D: Appl. Phys . , 2009, vol. 42, pp. 055209.
  17. Haidar Y., Pateau A., Rhallabi A. et al . SF 6 and C 4 F 8 global kinetic models coupled to sheath models // Plasma Sources Sci. Technol., 2014, vol. 23, pp. 065037.
  18. Myakonkikh A.V., Kuzmenko V.O ., Efremov A.M., Rudenko K. V . Gas Phase Composition and Kinetics of Fluorine Atoms in SF 6 Plasma // Russian Microelectronics . 2024, Vol. 53. No. 6. pp. 582–591.
  19. Mao M., Wang Y.N., Bogaerts A ., Numerical study of the plasma chemistry in inductively coupled SF 6 and SF 6 /Ar plasmas used for deep silicon etching applications // J. Phys. D: Appl. Phys . 2011, vol . 44, pp. 435202.
  20. Lallement L., Rhallabi A., Cardinaud C., Peignon-Fernandez M.C., Alves L.L . Global model and diagnostic of a low-pressure SF 6 /Ar inductively coupled plasm а // Plasma Sources Sci. Technol . 2009. V. 18. P. 025001 (1–10).
  21. Yang W., Zhao S.-X. , Wen D.-Q., Liu W., Liu Y.-X., Li X.-C ., and Wang, Y.-N. F-atom kinetics in SF 6 /Ar inductively coupled plasmas // J. Vac. Sci. Technol. A, 2016, vol. 34(3), pp. 031305.
  22. Ryan K.R., Plumb I.C . A model for the etching of silicon in SF 6 /O 2 plasmas, Plasma Chem. // Plasma Proc., 1990, vol. 10(2), pp. 207–229.
  23. Pateau A., Rhallabi A., Fernandez M.-C., B oufnichel M., Roque ta F . Modeling of inductively coupled plasm a SF 6 /O 2 /Ar plasma d ischarge: Effect of O 2 on the plasma kinetic prope rties // J. Vac. Sci. Technol. A., 2014, vol. 32, pp. 021303(1–10) .
  24. Efremov A., Lee J., Kim J ., On the control of plasma parameters and active species kinetics in CF 4 +O 2 +Ar gas mixture by CF 4 /O 2 and O 2 /Ar mixing ratios // Plasma Chem. Plasma Process . 2017. V. 37. pp. 1445–1462.
  25. Efremov A., Lee B. J., Kwon K.-H . On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO 2 and Si x N y ) in multi-component fluorocarbon gas mixtures // Materials, 2021. Vol. 14. pp. 1432(1–27).
  26. Miakonkikh A., Kuzmenko V., Efremov A., Rudenko K . Parameters and composition of plasma in a CF 4 + H 2 + + Ar gas mixture: Effect of CF 4 /H 2 ratio // Russian Microelectronics, 2024. Vol. 53. No. 1. pp. 70–78.
  27. Miakonkikh A., Kuzmenko V., Efremov A., Rudenko K . On Relationships between Gas-Phase and Heterogeneous Process Kinetics in CF 4 + H 2 + Ar Plasma // Vacuum . 2025. Vol. 234. pp. 114044(1–13)
  28. Shun’ko E. V . Langmuir probe in theory and practice. Universal Publishers, Boca Raton. 2008. 245 p.
  29. Engeln R., K larenaar B., Guai tella O . Foundations of optical diagnostics in low-temperature plasmas // Plasma Sources Sci. Technol., 2020, vol. 29, pp. 063001.
  30. Lopaev D.V., Volynets A.V ., Zyryanov S.M., Zotovich A.I., Rakhimov A.T . Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys ., 2017, vol. 50, pp. 075202.
  31. Raju G.G . Gaseous electronics. Tables, Atoms and Molecules. CRC Press, Boca Raton. 2012. 790 p.
  32. Christophorou L.G. Olth off J.K. Fundamental electron interactions with plasma processing gases. Springer Science+Business Media LLC, New York. 2004. 776 p.
  33. Cunge G., Ramos R., Vempaire D. , Touzeau M., Neijba - uer M., Sadeghi N . Gas temperature measurement in CF 4 , SF 6 , O 2 , Cl 2 , and HBr inductively coupled plasmas // J. Vac. Sci. Technol . , 2009, vol. 27(3), pp. 471.
  34. Handbook of chemistry and physics, Boca Raton: CRC press, 1998.
  35. Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B . Comparison of model and experiment for Ar, Ar/O 2 and Ar/O 2 /Cl 2 inductively coupled plasmas // J. Phys. D: Appl. Phys ., 2006, vol. 39(15), pp. 3272–3284.
  36. Lee C., Lieberma n M.A . Global model of Ar, O 2 , Cl 2 , and Ar/O 2 high-density plasma discharges // J. Vac. Sci. Technol. A., 1995, vol. 13, pp. 368–380.
  37. Kota G.P., Coburn J.W ., Graves D.B . Heterogeneous recombination of atomic bromine and fluorine // J. Vac. Sci. Technol . A, 1999, vol. 17, pp. 282.
  38. Chantry P.J . A simple formula for diffusion calculations involving wall reflection and low density // J. Appl. Phys., 1987, vol. 62(4), pp. 1141.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».