Investigation of a Thermal Detonation Wave in a Mixture of  Water Drops with Molted Lead

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access


The patterns of the wave of thermal interaction of water drops in a high-temperature molten lead, are studied. Due to the boiling of water on the surface of molten lead, both liquids (phases) are separated by a vapor film. A one-dimensional model of interacting and interpenetrating continuums is used, which describes the dynamics of each fluid by introducing a special field characterized by its own velocity, temperature, and volume fraction. Wave velocity is determined by the equality of phase velocities and temperatures in the Chapman-Jouguet plane. The parameters at the pressure peak are calculated from the conditions at the discontinuity which are the boundary conditions for integrating the conservation equations in the zone of interaction of water droplets with the melt. The resulting structure of the thermal detonation wave is characterized by the fact that the maximum pressure is at some distance from the shock wave.

About the authors

V. I. Melikhov


Author for correspondence.
Russia, Moscow

O. I. Melikhov


Author for correspondence.
Russia, Moscow

Saleh Bashar


Author for correspondence.
Russia, Moscow


  1. Зельдович Я.Б., Компанеец А.С. Теория детонации. М.: Гостехиздат, 1955. 268 с.
  2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учебное пособие. В 10 тт. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.
  3. Крайко А.Н. Неустойчивость стационарных течений в каналах переменной площади поперечного сечения с детонационной волной Чемпена–Жуге // ПММ. 2019. Т. 83. № 3. С. 354–369.
  4. Вайнштейн П.Б., Нигматулин Р.И., Попов В.В. Переход конвективного горения аэровзвесей унитарного топлива в детонацию // Физика горения и взрыва. 1980. № 5. С. 102–106.
  5. Нигматулин Р.И., Вайнштейн П.Б., Ахатов И.Ш. Структура стационарных детонационных волн в смесях газа с частицами унитарного топлива // в сб.: Химическая физика процессов горения и взрыва. Детонация. Черноголовка: Ин-т хим. физ. АН СССР, 1980. 128 с. С. 96–99.
  6. Ахатов И.Ш., Вайнштейн П.Б., Нигматулин Р.И. Структура детонационных волн в газовзвесях унитарного топлива // Изв. АН СССР. МЖГ. 1981. № 5. С. 47–53.
  7. Нигматулин Р.И. Динамика многофазных сред. Ч. I. М.: Наука, 1987. 464 с.
  8. Board S.J., Hall R.W., Hall R.S. Detonation of a fuel coolant explosion // Nature. 1975. V. 254. P. 319–321.
  9. Мелихов В.И., Мелихов О.И., Якуш С.Е. Гидродинамика и теплофизика паровых взрывов. М.: ИПМех РАН, 2020. 276 с.
  10. Мелихов В.И., Мелихов О.И., Якуш С.Е. Термическое взаимодействие высокотемпературных расплавов с жидкостями // ТВТ. 2022. Т. 60. № 2. С. 280–318.
  11. Sharon A., Bankoff S.G. On the existence of steady supercritical plane thermal detonations // Int. J. Heat Mass Trans. 1981. V. 24. P. 1561–1572.
  12. Frost D.L., Lee J.H.S., Ciccarelli G. The use of Hugoniot analysis for the propagation of vapor explosion waves // Shock Waves. 1991. V. 1. P. 99–110.
  13. Iskhakov A.S., Melikhov V.I., Melikhov O.I., Yakush S.E., Le Tran Chung. Hugoniot analysis of experimental data on steam explosion in stratified melt-coolant configuration // Nucl. Engng.&Design. 2019. V. 347. P. 151–157.
  14. Dinh T.N. Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis // Proc. ICAPP 2007. Paper No. 7497. May 13–18, 2007. Nice, France.
  15. Iskhakov A.S., Melikhov V.I., Melikhov O.I. Hugoniot analysis of energetic molten lead water interaction // Annals of Nucl. Energy. 2019. V. 129. P. 437–449.
  16. Sobolev V. Database of thermophysical properties of liquid metal coolants for GEN-IV. Sodium, lead, lead-bismuth eutectic (and bismuth) // in: Belgian Nuclear Res. Centre. Sci. Rep. SCK CEN-BLG-1069. Boeretang, Belgium. 2010. P. 175.
  17. IAPWS (The Int. Assoc. for the Properties of Water&Steam).
  18. Pilch M., Erdman C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop // Int. J. Multiphase Flow. 1987. V. 13. P. 741–757.
  19. Meignen R., Picchi S., Lamome J. et al. The challenge of modeling fuel-coolant interaction: Pt. I – Premixing // Nucl. Engng.&Design. 2014. V. 280. P. 511–527.
  20. Fletcher D.F., Anderson R.P. A review of pressure-induced propagation models of the vapour explosion process // Prog. Nucl. Energy. 1990. V. 23. P. 137–179.
  21. Fletcher D.F. An improved mathematical model of melt/water detonations – I. Model formulation and example results // Int. J. Heat Mass Transfer. 1991. V. 34. № 10. P. 2435–2448.
  22. Безносов А.В., Пинаев С.С., Давыдов Д.В. и др. Экспериментальные исследования характеристик контактного теплообмена свинцовый теплоноситель–рабочее тело // Атомная энергия. 2005. Т. 98 (3). С. 182–187.
  23. Carachalios C., Burger M., Unger H. A transient two-phase model to describe thermal detonations based on hydrodynamic fragmentation // in: Proc. Int. Meeting on LWR Severe Accident Evaluation, Cambridge, Massachusetts, 28 Aug.–1 Sep. 1983.
  24. Ishii M., Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. New York: Springer, 2011. 518 p.
  25. Kolev N.I. Multiphase Flow Dynamics. V. 1. Fundamentals. New York: Springer, 2015. 840 p.

Supplementary files

Supplementary Files

Download (16KB)

Download (19KB)

Download (26KB)

Download (36KB)

Copyright (c) 2023 В.И. Мелихов, О.И. Мелихов, Салех Башар

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies