Models for description of subsonic flows with premixed turbulent combustion in channels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review of works on numerical modeling of turbulent combustion is presented. The article presents the discussion about three classes of models, which are necessary for closure of mathematical model of flow (turbulence model, model of chemical kinetics, model of turbulence combustion interaction). The description of mathematical approach for modeling of subsonic flows with premixed turbulent combustion in channels within Reynolds equations with closure based on k–ω turbulence models is provided. Various models of turbulent combustion interaction based on PaSR (Partially Stirred Reactor) – quasi-steady models PaSR and PFR, and also model with memory effects EPaSR. The new model for influence of combustion on turbulent heat and mass transfer intensity – variable turbulent Prandtl and Schmidt model, compatible with turbulence models and PaSR based turbulence combustion interaction models. The appendix includes the description of differential model for turbulent scalar flux, which was a priori calibrated against DNS database of turbulent Rayleigh–Taylor flow.

Full Text

Restricted Access

About the authors

V. V. Vlasenko

TsAGI; MIPT

Author for correspondence.
Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky; Dolgoprudny

R. A. Balabanov

TsAGI; MIPT

Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky; Dolgoprudny

Wencha Liu

MIPT

Email: vlasenko.vv@yandex.ru
Russian Federation, Dolgoprudny

S. S. Molev

TsAGI

Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky

V. A. Sabelnikov

TsAGI

Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky

References

  1. Solomatin R.S. Numerical modeling of high speed mixing and combustion processes in heterogeneous fuel-air mixtures. Phd Thesis. Moscow: Keldysh Inst. of Appl. Math., 2022, 191 p. (in Russian)
  2. Wilcox D.C. Turbulence modeling for CFD. La Cañada: DCW Industries, 2006. 544 p.
  3. Kolmogorov A.N. Equations of turbulent motion in an incompressible fluid // Dokl. Akad. Nauk SSSR, 1942, vol. 6, no. 1–2, pp. 56–58. (in Russian)
  4. Poinsot T., Veynante D. Theoretical and Numerical Combustion. Flourtown: RT Edwards Inc., 2005. 522 p.
  5. Peters N. Turbulent Combustion. Cambridge: Univ. Press, 2000. 304 p.
  6. Lipatnikov A. Fundamentals of Premixed Turbulent Combustion. Boca Raton: CRC Press, 2012. 548 p.
  7. Schetinkov E.S. Physics of Gas Combustion. Moscow: Nauka, 1965. 292 p. (in Russian)
  8. Kuznetsov V.R., Sabel’nikov V.A. Turbulence and Combustion. N.Y.: Hemisphere, 1990. 384 p.
  9. Su J., Liu A., Xiao H., Luo K., Fan J. Entropy: an inspiring tool for characterizing turbulence–combustion interaction in swirling flames via direct numerical simulations of non-premixed and premixed flames // Entropy, 2023, vol. 25, no. 8, pp. 1151.
  10. Borghi R. Turbulent combustion modeling // Progr. in Energy&Combust. Sci., 1988, vol. 14, no. 4, pp. 245–292.
  11. Klimenko A.Y., Bilger R.W. Conditional moment closure for turbulent combustion // Progr. in Energy&Combust. Sci., 1999, vol. 25, no. 6, pp. 595–687.
  12. Baurle R.A., Girimaji S.S. Assumed PDF turbulence-chemistry closure with temperature-composition correlations // Combust.&Flame, 2003, vol. 134, no. 1–2, pp. 131–148.
  13. Zimont V.L., Meshcheryakov E.A., Sabel’nikov V.A. A simple model for calculation of molecular mixing in the turbulent combustion of unmixed gases // Combust., Explos.&Shock Waves, 1978, vol. 14, no. 3, pp. 315–320.
  14. Molchanov A.M., Yanyshev D.S., Bykov L.V. Influence of turbulent fluctuations on non-equilibrium chemical reactions in the flow // J. of Physics: Conf. Ser. IOP, 2017, vol. 891, no. 1, art. no. 012106.
  15. Meshcheryakov E.A., Sabel’nikov V.A. Combustion of hydrogen in a supersonic turbulent flow in a channel with simultaneous delivery of fuel and oxidant // Combust., Explos.&Shock Waves, 1981, vol. 17, no. 2, pp. 159–167.
  16. Peters N. Laminar flamelet concepts in turbulent combustion // Int. Symp. on Combustion. Elsevier, 1988. vol. 21. no. 1. pp. 1231–1250.
  17. Zheng L.L., Bray K.N.C. The application of new combustion and turbulence models to H2-air nonpremixed supersonic combustion // Combust.&Flame, 1994, vol. 99, no. 2, pp. 440–448.
  18. Flamelet model application for non-premixed turbulent combustion: NAS 1.26: 202176 / ed. by Secundov A. et al. Washington D.C.: NASA, 1996.
  19. Piffaretti S.G. Flame age model: a transient laminar flamelet approach for turbulent diffusion flames. Ph.D. Thesis. Zurich: Swiss Federal Inst. of Technol., 2007. 194 p.
  20. Magnussen B.F. The eddy dissipation concept: A bridge between science and technology // ECCOMAS Conf. on Comput. Combust., Lisbon, 2005.
  21. Chomiak J., Karlsson A. Flame liftoff in diesel sprays // Int. Symp. on Combust., Elsevier, 1996, vol. 26, no. 2, pp. 2557–2564.
  22. Sabelnikov V., Fureby C. LES combustion modeling for high Re flames using a multi-phase analogy // Combust.&Flame, 2013, vol. 160, no. 1, pp. 83–96.
  23. Moule Y., Sabelnikov V., Mura A. Highly resolved numerical simulation of combustion in supersonic hydrogen–air coflowing jets // Combust.&Flame, 2014, vol. 161, no. 10, pp. 2647–2668.
  24. Petrova N., Sabelnikov V., Bertier N. Numerical simulation of a backward-facing step combustor using RANS/Extended Partially Stirred Reactor model // EUCASS-2015. 17 p.
  25. Vlasenko V.V., Nozdrachev A.Yu., Sabelnikov V.A., Shirayeva A.A. Analysis of stabilization mechanisms of turbulent combustion on the data of calculations with application of partially stirred reactor // Combust.&Explos., 2019, vol. 12, no. 1, pp. 43–57. (in Russian)
  26. Zimont V.L. Gas premixed combustion at high turbulence // Turbulent Flame Closure Combust. Model. Experim. Thermal&Fluid Sci., 2000, vol. 21, no. 1–3, pp. 179–186.
  27. Lipatnikov A.N., Chomiak J. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations // Progr. in Energy&Combust. Sci., 2002, vol. 28, no. 1, pp. 1–74.
  28. Avgustinovich V.G., Kutsenko Y.G. Creation and application of combined calculation methodology for low emission combustion chamber // Izv. vuzov. Rus. Aeron., 2011, vol. 54, no. 2, pp. 170–178.
  29. Schelkin K.I. On the issue of turbulent combustion and combustion phases in the engine. // Izv. AN SSSR. OTN, 1953, no. 3, pp. 463–471. (in Russian)
  30. Rauschenbach B.V., Belyi S.A., Bespalov I.V., Borodachev V.Ya., Volynskiy M.S., Prudnikov A.G. The Physical Basis of the Working Process in the Combustion Chambers of Air-Jet Engines. Moscow: Mashinostroenie, 1964. 526 p. (in Russian)
  31. Chen Y.C., Mansour M.S. Investigation of flame broadening in turbulent premixed flames in the thin-reaction-zones regime // Int. Symp. on Combustion, 1998, vol. 27. pp. 811–818.
  32. Skiba A.W., Wabel T.M., Carter C.D., Hammack S.D., Temme J.E., Driscoll J.F. Premixed flames subjected to extreme levels of turbulence part I: Flame structure and a new measured regime diagram // Combust.&Flame, 2018, vol. 189, pp. 407–432.
  33. Wabel T.M., Skiba A.W., Driscoll J.F. Evolution of turbulence through a broadened preheat zone in a premixed piloted Bunsen flame from conditionally-averaged velocity measurements // Combust.&Flame, 2018, vol. 188, pp. 13–27.
  34. Ratner A., Driscoll J.F., Donbar J.M., Carter C.D., Mullin J.A. Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime // Proc. Combust. Inst., 2000, vol. 28, pp. 245–252.
  35. Sabelnikov V.A., Yu R., Lipatnikov A.N. Thin reaction zones in highly turbulent medium // Int. J. Heat Mass Transf., 2019, vol. 128, pp. 1201–1205.
  36. Heinz S. A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications // Progr. in Aerospace Sci., 2020, vol. 114, pp. 100–597.
  37. Nagano Y., Kim C. A two-equation model for heat transport in wall turbulent shear flows // J. of Heat Transfer, 1988, vol. 110, pp. 583–589.
  38. Wikström P.M., Wallin S., Johansson A.V. Derivation and investigation of a new explicit algebraic model for the passive scalar flux // Phys. of Fluids, 2000, vol. 12, no. 3, pp. 688–702.
  39. Goldberg U. Variable turbulent Schmidt and Prandtl number modeling // Engng. App. Comp. Fluid Mech., 2010, vol. 4, pp. 511–520.
  40. Sanders J.P.H., Gokalp I. Scalar dissipation rate modelling in variable density turbulent axisymmetric jets and diffusion flames // Phys. of Fluids, 1998, vol. 10, no. 4, pp. 938–948.
  41. Xiao X., Hassan H.A., Baurle R.A. Modeling scramjet flows with variable turbulent Prandtl and Schmidt numbers // AIAA J., 2006, vol. 45, pp. 1415–1423
  42. Burrows M.C., Kurkov A.P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream // AIAA J., 1973, vol. 11, no. 9, pp. 1217–1218.
  43. Hoste J.J.O.E., Fechter S., Karl S., Hannemann K. Study of a supersonic reacting wall jet with a variable turbulent Prandtl and Schmidt number approach // Aerospace Sci.&Technol., 2020, vol. 106, art. no. 106070.
  44. Shih T., Lumley J., Janicka J. Second-order modelling of a variable-density mixing layer // J. of Fluid Mech., 1987, vol. 180, pp. 93–116.
  45. Danish, M., Sinha, S., Girimaji, S. Influence of flow topology and dilatation on scalar mixing in compressible turbulence // J. of Fluid Mech., 2016, vol. 793, pp. 633–655.
  46. Mantel T., Borghi R. A new model of premixed wrinkled flame propagation based on a scalar dissipation equation // 1994, vol. 96, no. 4, pp. 443–457.
  47. Mura A., Borghi R. Towards an extended scalar dissipation equation for turbulent premixed combustion // Combust.&Flame, 2003, vol. 133, no. 1–2, pp. 193–196.
  48. Tushkanov A.S. Thermally and chemically unsteady processes in jet of solid fuel propulsion engine. Phd Thes. Moscow: Moscow Aviation Institute, 2019. 167 p. (in Russian)
  49. ANSYS CFD // https://www.ansys.com/products/fluids#tab1-2
  50. CFD-FASTRAN // https://www.esi.com.au/software/cfd-ace/fastran
  51. Zettervall N., Fureby C. A computational study of ramjet, scramjet and dual-mode ramjet combustion in combustor with a cavity flameholder // AIAA Aerospace Sci. Meeting, AIAA paper, 2018, vol. 1146, 14 p.
  52. Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S., William C., Gardiner J., Lissianski V.V., Qin Z. GRI-MECH 3.0. http://www.me.berkeley.edu/gri_mech/
  53. Lebedev A.V., Okun M.V., Baraniv A.E., Deminsky M.A., Potapkin B.V. Systematic procedure of kinetic mechanisms reduction of chemical processes // Chem. Phys.&Mesoscopy, 2011, vol. 13, no. 1. (in Russian)
  54. Smooke M.D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume. Lecture Notes in Physics. Vol. 384. Berlin: Springer, 1991. 251 p.
  55. Larsson A., Zettervall N., Hurtig T., Nilsson E., Ehn A., Petersson P., Alden M., Larfeldt J., Fureby C. Skeletal methane–air reaction mechanism for large eddy simulation of turbulent microwave-assisted combustion // Energy& Fuels, 2017, vol. 31, no. 2, pp. 1904–1926.
  56. Peters N., Rogg B. Reduced kinetic mechanisms for applications in combustion systems. Berlin: Springer Science & Business Media. 1993. 362 p.
  57. Goussis D. On the construction and use of reduced chemical kinetic mechanisms produced on the basis of given algebraic relations // J. of Comput. Phys., 1996, vol. 128, no. 2, pp. 261–273.
  58. Westbrook C.K., Dryer F.L. Chemical kinetic modeling of hydrocarbon combustion // Progr. in Energy&Combust. Sci., 1984, vol. 10, no. 1, pp. 1–57.
  59. Franzelli B., Riber E., Gicquel L.Y., Poinsot Т. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame // Combust.&Flame, 2012, vol. 159, no. 2, pp. 621–637.
  60. Basevich V.Ya., Belyaev A.A., Frolov S.M. Global kinetic mechanisms for calculation of turbulent reacting flows. P. 1. Basic chemical process of heat release // Chem. Phys., 1998, vol. 7, no. 9, pp. 112–128. (in Russian)
  61. Kundu K., Penko P., Yang S. Reduced reaction mechanisms for numerical calculations in combustion of hydrocarbon fuels // 36th AIAA Aerospace Sci. Meeting&Exhibit, AIAA paper, 1998, vol. 98, no. 0803. 16 p.
  62. Evans J.S., Schexnayder Jr.C.J. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames // AIAA J., 1980, vol. 18, no. 2, pp. 188–193.
  63. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion: NASA Tech. Rep. 2791 / ed. by Jachimowski C.J. Washington D.C.: NASA, 1988.
  64. Chemical kinetic analysis of hydrogen-air ignition and reaction times: NASA Tech. Rep. 1856 / Ed. by Rogers R.C., Schexnayder C.J. Washington D.C.: NASA, 1981.
  65. Ju Y., Niioka T. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer // Combust.&Flame, 1994, vol. 99, no. 2, pp. 240–246.
  66. Gerlinger P., Nold K., Aigner M. Investigation of hydrogen-air reaction mechanisms for supersonic combustion // 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.&Exhibit., 2008.
  67. Shiryaeva A., Vlasenko V., Anisimov K. Development and Application of Numerical Technology for simulation of different combustion types in high-speed viscous gas turbulent flows // 44th AIAA Fluid Dyn. Conf. Amer. Inst. of Aeron.&Astron., 2014.
  68. Berglund M., Fedina E., Fureby C., Tegnér J., Sabel’nikov V. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet // AIAA J., 2010, vol. 48, no. 3, pp. 540–550.
  69. Liu B., He G.-Q., Qin F., An J., Wang S., Shi L. Investigation of influence of detailed chemical kinetics mechanisms for hydrogen on supersonic combustion using large eddy simulation // Int. J. of Hydrogen Energy, 2019, vol. 44, no. 10, pp. 5007–5019.
  70. Fureby C. Subgrid models, reaction mechanisms, and combustion models in large-eddy simulation of supersonic combustion// AIAA J., 2021, vol. 59, no. 1, pp. 215–227.
  71. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables): Rep. No. ANL-05/20 / ed. by Burcat A., Ruscic B. Argonne, IL: Argonne National Lab (ANL), 2005. 414 p.
  72. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model // Turbul., Heat Mass Transfer, 2003, vol. 4, no. 1, pp. 625–632.
  73. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J., 1994, vol. 32, no. 8, pp. 1598–1605.
  74. Magnussen B.F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow // 19th AIAA Aerospace Sci. Meeting: Missouri. USA, 1981. 7 p.
  75. Troshin A.I., Molev S.S., Vlasenko V.V., Mikhailov S.V., Bakhne S., Matyash S.V. Modeling of turbulent flows on the basis of ides method in zflare program // Comput. Contin. Mech., 2023, vol. 16, no. 2, pp. 203–218. (in Russian)
  76. Lewandowski M.T., Ertesvåg I.S. Analysis of the eddy dissipation concept formulation for MILD combustion modelling // Fuel, 2019, vol. 224, pp. 687–700.
  77. Li Z., Cuoci A., Sadiki A., Parente A. Comprehensive numerical study of the Adelaide jet in Hot-Coflow burner by means of RANS and detailed chemistry // Energy, 2017, vol. 139, pp. 555–570.
  78. De A., Oldenhof E., Sathiah P., Roekaerts D. Numerical simulation of delft-jet-in-hot-coflow (djhc) flames using the eddy dissipation concept model for turbulence–chemistry interaction// Flow, Turbul.&Combust., 2011, vol. 87, pp. 537–567.
  79. Moule Y., Sabel’nikov V., Mura A. Modelling of self-ignition processes in supersonic non premixed coflowing jets based on a PaSR approach // 17th AIAA Int. Space Planes and Hypersonic Systems and Technologies Conf., 2011, pp. 2396.
  80. Shiryaeva A.A. Modeling of high speed flows with mixed regimes of turbulent combustion on the basis of three dimensional Reynolds equations. Phd Thes. Moscow: MIPT, 2019. 217 p. (in Russian)
  81. Balabanov R.A., Vlasenko V.V., Nozdrachev A.Yu. Description of premixed turbulent combustion in a channel with a step using partially stirred reactor models // Combustion, Explosion, and Shock Waves, 2024, vol. 60, no. 4, pp. 460–470.
  82. Warhaft Z., Lumley J. An experimental study of the decay of temperature fluctuations in grid-generated turbulence // J. of Fluid Mech., 1978, vol. 88, no. 4, pp. 659–684.
  83. Sreenivasan K.R., Antonia R.A., Chambers A.J. On the variation of the turbulent Prandtl number in shear flows // Int. Commun. in Heat&Mass Transfer, 1984, vol. 11, no. 5, pp. 497–501.
  84. Keistler P., Xiao X., Hassan H., Rodriguez C. Simulation of supersonic combustion using variable turbulent Prandtl/Schmidt number formulation // 36th AIAA Fluid Dyn. Conf.&Exhibit. 2006. 3733.
  85. Libby P.A. A non-gradient theory for premixed turbulent flames // in: Mechanics Today: Vol. 5. N.Y.: Pergamon, 1980. pp. 215–232.
  86. Shih T.-H., Lumley J.L., Chen J.-Y. Second-order modeling of a passive scalar in a turbulent shear flow // AIAA J., 1990, vol. 28, no. 4, pp. 610–617.
  87. Dakos T., Gibson M.M. On Modelling the Pressure Terms of the Scalar Flux Equations. Berlin;Heidelberg: Springer, 1987.
  88. Craft T.J., Ince N.Z., Launder B.E. Recent developments in second-moment closure for buoyancy-affected flows // Dyn. of Atmos.&Oceans, 1996, vol. 23, no. 1–4, pp. 99–114.
  89. Johns Hopkins University Turbulence Database. http://turbulence.pha.jhu.edu/ (date of access: 22 december 2023).
  90. Balabanov R., Usov L., Troshin A., Vlasenko V., Sabelnikov V. A differential subgrid stress model and its assessment in large eddy simulations of non-premixed turbulent combustion // Appl. Sci., 2022, vol. 12, art. no. 8491.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (2MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».