Shock wave and centered rarefaction fan in Noble–Abel gas
- Authors: Brutyan M.A.1,2, Ibragimov U.G.1, Meniailov M.A.1
-
Affiliations:
- Central Aerohydrodynamic Institute named after N.E. Zhukovsky
- Moscow Institute of Physics and Technology
- Issue: Vol 88, No 6 (2024)
- Pages: 874-886
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/282874
- DOI: https://doi.org/10.31857/S0032823524060045
- EDN: https://elibrary.ru/IGZMRY
- ID: 282874
Cite item
Abstract
Planar supersonic flows of inviscid gas, obeyed the Abel – Noble (AN) equation of state, are considered. Formulas connecting flow parameters of considered gas before and after shock wave are obtained. Solution of Prandtl–Meyer problem for flow of AN gas in centered rarefaction fan is constructed. Critical values of velocity vectors turn angle in oblique shock wave and rarefaction fan are found. Comparisons with corresponding solution for perfect gas are given.
Keywords
Full Text

About the authors
M. A. Brutyan
Central Aerohydrodynamic Institute named after N.E. Zhukovsky; Moscow Institute of Physics and Technology
Author for correspondence.
Email: murad.brutyan@tsagi.ru
Russian Federation, Zhukovsky; Dolgoprudny
U. G. Ibragimov
Central Aerohydrodynamic Institute named after N.E. Zhukovsky
Email: umar.ibragimov94@yandex.ru
Russian Federation, Zhukovsky
M. A. Meniailov
Central Aerohydrodynamic Institute named after N.E. Zhukovsky
Email: mickmenn@yandex.ru
Russian Federation, Zhukovsky
References
- Neron L., Saurel R. Noble–Abel first-order virial equations of state for gas mixtures resulting of multiple condensed reactive materials combustion // Phys. Fluids, 2021, vol. 93, pp. 3090–3097.
- Moore F. Approximate Methods for Weapon Aerodynamics. AIAA Pub., 2000. 464 p.
- Brutyan M.A., Ibragimov U.G., Meniailov M.A. Self-similar flows of the Abel–Noble gas in a planar diffuser // Proc. of MIPT, 2023, vol. 15, no. 3, pp. 133–143. (in Russian)
- Banks J.W. On exact conservation for the euler equations with complex equations of state // Commun. in Comput. Phys., 2010, vol. 8, pp. 995–1015.
- Dumbser M, Casulli V. A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state // Appl. Math.&Comput., 2016, vol. 272, pt. 2, pp. 479–497.
- Tang X., Dzieminska E., Hayashi A.K. A preliminary discussion of the real gas effect on the isentropic expansion inlet boundary conditions of high-pressure hydrogen jets // Sci.&Technol. of Energetic Mater., 2019, vol. 80, no. 4, pp. 150–158.
- Menikoff R., Plohr B.J. The Riemann problem for fluid flow of real materials // Rev. of Modern Phys., 1989, vol. 61, no. 1, pp. 75–130.
- Radulescu M.I. Compressible flow in a Noble–Abel stiffened gas fluid // Phys. Fluids, 2020, vol. 32, 056101, pp. 1–5.
- Zifeng Weng, Remy Mevel, Chung K. Law. On the critical initiation of planar detonation in Noble–Abel and van der Waals gas // Combust.&Flame, 2023, vol. 255, pp. 112890. https://doi.org/10.1016/j.combustflame.2023.112890
- Gonzales C.A.Q., Pizzuti L., Costa F. Propagation of combustion waves in Noble–Abel gases // 20th Int. Congr. of Mechanical Engineering. Nov. 15–20, 2009. Gramado, Brazil. pp. 1–10.
- Shih-I Pai. Introduction to the theory of compressible flow // Literary Licensing, LCС, 2013, pp. 1–400.
- Johnston I.A. The Noble–Abel Equation of State: Thermodynamic Derivations for Ballistics Modeling. Edinburgh, South Australia: DSTO, 2005.
- Petrik G.G. Problems of low-parameter equations of state // J. of Phys.: Conf. Ser., 2017, vol. 891, art. no. 012328. https://doi.org/10.1088/1742-6596/891/1/012328
- Brutyan M.A. Foundation of Transonic Aerodynamics. Moscow: Nauka, 2017. 175 p. (in Russian)
- Landau L.D., Lifshitz E.M. Fluid Mechanics. Moscow: Nauka, 1986. 735 p. (in Russian)
Supplementary files
