Shock–wave drag of profile flowing by transonic gas flow: history, achievements, problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a review of works on the theory of profile drag and contains an attempt to review the process of basic ideas development about the physical processes that take place at transonic airfoil flow. It should be noted that this field of aerodynamics was replete with erroneous statements at the early stages of its development. The accumulation of experimental data and the improvement of the mathematical apparatus have made it possible to eliminate inaccuracies in the formulation of problems, as well as to significantly improve the mathematical models describing this phenomenon. Nevertheless, a few problems remain unsolved at the present time, requiring further delving into the physics of the phenomenon and improving the mathematical apparatus.

Full Text

Restricted Access

About the authors

A. S. Petrov

Central Aerohydrodynamic Institute

Author for correspondence.
Email: aspetrov1906@rambler.ru
Russian Federation, Zhukovsky

G. G. Soudakov

Central Aerohydrodynamic Institute

Email: soudakov@mail.ru
Russian Federation, Zhukovsky

References

  1. Nikolsky A.A., Taganov G.I. Gas motion in a local supersonic zone and some conditions of potential flow destruction // PMM, 1946, vol. 10, iss. 4, pp. 481–502.
  2. Boxer V.D., Serebriyskiy Ya.M. Approximate method for determining the wave drag of an airfoil in the presence of a local supersonic zone // Uch. Zap. TsAGI, 1978, no. 5, vol. 9, pp. 21–29.
  3. Boxer V.D., Lyapunov S.V. Limits of applicability of approximate methods for calculating the wave drag of an airfoil at transonic speeds // Uch. Zap. TsAGI, 1995, no. 3–4, vol. XXVI, pp. 26–34.
  4. Potapchik A.V. Experimental study of the flow field near an airfoil at transonic speeds // Tr. TsAGI, 1979, no. 2010, pp. 22–34.
  5. Zubtsov A.B., Sudakov G.G. Asymptotic solution of the problem of subsonic gas flow around an airfoil with the formation of a local supersonic zone // Uch. Zap. TsAGI, 2011, vol. XLII, no. 2, pp. 3–9.
  6. Petrov A.S. On auxiliary hypotheses of the theory of wave resistance // Uch. Zap. TsAGI, 1989, vol. XX, no. 2, pp. 61–65.
  7. Khristianovich S.A., Serebriysky Ya.M. On wave resistance // Tr. TsAGI, 1944, no. 550, pp. 1–18.
  8. Burago G.F. Theory of Airfoils Taking Into Account the Influence of Air Compressibility. Moscow: Zhukovsky Air Force Engineering Academy Pub., 1949. pp. 1–166. (in Russian)
  9. Bokser V.D., Sudakov G.G. Aerodynamic drag of bodies in transonic flow. Theory and applications to computational aerodynamics // Fluid Dyn., 2008, vol. 43, pp. 613–624. https://doi.org/10.1134/S0015462808040145
  10. Cole J.D., Cook L. Transonic Aerodynamics. N.Y.: Elsevier, 1986.
  11. Landau L.D., Lifshits E.M. Hydrodynamics. Moscow: Nauka, 1986. 736 p. (in Russian)
  12. Krasnov N.F. Aerodynamics. Vol. 1. Moscow: Higher School, 1976. 310 p. (in Russian)
  13. Zelensky I.E. On the frontal resistance of bodies immersed in a gas flow of supersonic velocity // Uch. Zap. Kharkov Univ., 1949, vol. 29, pp. 1–183.
  14. Karman T.F. Fundamentals of high-speed aerodynamics // in: General Theory of High Speed Aerodynamics / ed. by Sears W.R. Princeton: Univ. Press, 1954. xiv+758 p.
  15. Rinlgleb F. Exakte Losungen der Differentialgleichungen einer adiabatischen Gasstromung // Zeitschrift fur Angewandte Mathematik und Mechanik. Ingenieurwissenschaftaftliche Forschungsarbeiten, 1940, vol. 20, no. 4, pp. 185–198.
  16. Frankl F.I. On the formation of shock waves in subsonic flows with local supersonic velocities // PMM, 1947, iss. 11, pp. 199–202.
  17. Busemann A. The non-existence of transonic potential flow // Proc. of Symp. in Applied Mathematics, 1953, no. 4, pp. 29–40.
  18. Guderley G. On the Presence of Shocks in Mixed Subsonic-Supersonic Flow Patterns // Adv. in Appl. Mech., 1953, no. 3, pp. 145–184.
  19. Bers L. Results and conjectures in the mathematical theory of subsonic and transonic gas flows // Commun. on Pure&Appl. Math., 1954, no. 7, pp. 79–104.
  20. Morawetz C.S. On the non-existence of continuous transonic flows past profiles // Commun. on Pure &A ppl. Math., 1956, no. 9, pp. 45–68.
  21. Bers L. Mathematical Problems in Subsonic and Transonic Gas Dynamics. Moscow: Inostr. Lit-ra, 1961. 208 p. (in Russian)
  22. Sears W.R. Transonic potential flow of a compressible fluid // Appl. Phys., 1951, vol. 21, pp. 771–778.
  23. Golubev V.V. Lectures on Wing Theory. Moscow;Leningrad: GITTL, 1949. 480 p. (in Russian)
  24. Panzhenskiy V.A., Petrov A.S. On the flow in the local supersonic zone during transonic flow around an airfoil // Uch. Zap. TsAGI, 1987, vol. 18, no. 2, pp. 1–8.
  25. Lifshits Yu.B. On the theory of transonic flows around an airfoil // Uch. Zap. TsAGI, 1973, vol. IV, no. 5, pp. 1–8.
  26. Lyapunov S.V. Accelerated method of the Euler equations solution in transonic airfoil flow problem // Matem. Modelir., 1991, no. 4, pp. 83–92.
  27. Schlichting H., Gersten K. Boundary Layer Theory. Springer, 2004.
  28. Loitsyansky L.G. Fluid Mechanics. Moscow: Nauka, 1970. 904 p. (in Russian)
  29. Giles M.B., Cummings R.M. Wake integration for three-dimensional flowfield computations: Theoretical development // J. of Aircraft, 1999, vol. 36, no. 2, pp. 357–365.
  30. Hunt D.L., Cummings R.M., Giles M.B. Wake integration for three–dimensional flowfield computations: Applications // J. of Aircraft, 1999, no. 2, vol. 36, pp. 366–373.
  31. Petruzzelli N., Keane A.J. Wave drag estimation for use with panel codes // J. Aircraft, 2001, no.4, vol. 38, pp. 778–780.
  32. Cole J.D., Malmuth N.D. Wave drag due to lift for transonic airplanes // Proc. Roy. Soc. A, 2005, vol. 461, pp. 541–560.
  33. Gariépy M., Trépanier J.-Y. Improvements in accuracy and efficiency for a far–field drag prediction and decomposition method // AIAA, 2010, 2010–4678, pp. 1–15.
  34. Sudakov G.G. Determination of the components of aerodynamic drag of an aircraft in a transonic flow described by the Reynolds system of equations // Uch. Zap. TsAGI, 2016, vol. XLVII, no. 1, pp. 3–12.
  35. Toubin H., Bailly D. Development and application of a new unsteady far-field drag decomposition method // AIAA, 2014, 2014–2991, pp. 1–18.
  36. Van der Vooren J., Destarac D. Drag/thrust analysis of a jet-propelled transonic transport aircraft: Definition of physical drag components // Aerospace Sci.&Technol., 2004, vol. 8, pp. 545–556.
  37. Petrov A.S. Influence of real properties of gas on total aerodynamic forces at subsonic flow speeds // Thermophys. & Aeromech., 2004, vol. 11, no. 1, pp. 33–50.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of flow around the profile in the presence of a local supersonic zone

Download (75KB)
3. Fig. 2. Wave drag coefficient for the NACA–0012 airfoil: angle of attack α = 0, Reynolds equations, k–ω SST turbulence model

Download (38KB)
4. Fig. 3. Shock wave height: angle of attack α = 0, Reynolds equations, k–ω SST turbulence model. The dependence is approximately linear. Deviations from the linear dependence are caused by the shock wave shift downstream with increasing M1 and decreasing curvature of the profile surface at the shock base point (see formula (4.7))

Download (29KB)
5. Fig. 4. The M1 number before the shock wave: angle of attack α = 0, Reynolds equations, k–ω SST turbulence model. The curve with diamond-shaped markers was obtained visually from the M1 field, the curve with square markers was obtained from the maximum entropy jump on the shock wave. The dependence is essentially nonlinear.

Download (27KB)
6. Fig. 5. Position and shape of the supersonic zone: M¥ = 0.73 – occurrence of the supersonic zone, M¥ = 0.75 – occurrence of the shock

Download (25KB)
7. Fig. 6. Distribution of Mach numbers by the height of the supersonic zone

Download (115KB)
8. Fig. 7. Comparison of theoretical, calculated and experimental values ​​of shock wave height

Download (91KB)
9. Fig. 8. Comparison of the values ​​of wave resistance (5.12) with experimental data [38]

Download (67KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».