Shock–wave drag of profile flowing by transonic gas flow: history, achievements, problems
- Authors: Petrov A.S.1, Soudakov G.G.1
-
Affiliations:
- Central Aerohydrodynamic Institute
- Issue: Vol 88, No 6 (2024)
- Pages: 853-873
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/282868
- DOI: https://doi.org/10.31857/S0032823524060032
- EDN: https://elibrary.ru/IHBDDX
- ID: 282868
Cite item
Abstract
This paper presents a review of works on the theory of profile drag and contains an attempt to review the process of basic ideas development about the physical processes that take place at transonic airfoil flow. It should be noted that this field of aerodynamics was replete with erroneous statements at the early stages of its development. The accumulation of experimental data and the improvement of the mathematical apparatus have made it possible to eliminate inaccuracies in the formulation of problems, as well as to significantly improve the mathematical models describing this phenomenon. Nevertheless, a few problems remain unsolved at the present time, requiring further delving into the physics of the phenomenon and improving the mathematical apparatus.
Keywords
Full Text

About the authors
A. S. Petrov
Central Aerohydrodynamic Institute
Author for correspondence.
Email: aspetrov1906@rambler.ru
Russian Federation, Zhukovsky
G. G. Soudakov
Central Aerohydrodynamic Institute
Email: soudakov@mail.ru
Russian Federation, Zhukovsky
References
- Nikolsky A.A., Taganov G.I. Gas motion in a local supersonic zone and some conditions of potential flow destruction // PMM, 1946, vol. 10, iss. 4, pp. 481–502.
- Boxer V.D., Serebriyskiy Ya.M. Approximate method for determining the wave drag of an airfoil in the presence of a local supersonic zone // Uch. Zap. TsAGI, 1978, no. 5, vol. 9, pp. 21–29.
- Boxer V.D., Lyapunov S.V. Limits of applicability of approximate methods for calculating the wave drag of an airfoil at transonic speeds // Uch. Zap. TsAGI, 1995, no. 3–4, vol. XXVI, pp. 26–34.
- Potapchik A.V. Experimental study of the flow field near an airfoil at transonic speeds // Tr. TsAGI, 1979, no. 2010, pp. 22–34.
- Zubtsov A.B., Sudakov G.G. Asymptotic solution of the problem of subsonic gas flow around an airfoil with the formation of a local supersonic zone // Uch. Zap. TsAGI, 2011, vol. XLII, no. 2, pp. 3–9.
- Petrov A.S. On auxiliary hypotheses of the theory of wave resistance // Uch. Zap. TsAGI, 1989, vol. XX, no. 2, pp. 61–65.
- Khristianovich S.A., Serebriysky Ya.M. On wave resistance // Tr. TsAGI, 1944, no. 550, pp. 1–18.
- Burago G.F. Theory of Airfoils Taking Into Account the Influence of Air Compressibility. Moscow: Zhukovsky Air Force Engineering Academy Pub., 1949. pp. 1–166. (in Russian)
- Bokser V.D., Sudakov G.G. Aerodynamic drag of bodies in transonic flow. Theory and applications to computational aerodynamics // Fluid Dyn., 2008, vol. 43, pp. 613–624. https://doi.org/10.1134/S0015462808040145
- Cole J.D., Cook L. Transonic Aerodynamics. N.Y.: Elsevier, 1986.
- Landau L.D., Lifshits E.M. Hydrodynamics. Moscow: Nauka, 1986. 736 p. (in Russian)
- Krasnov N.F. Aerodynamics. Vol. 1. Moscow: Higher School, 1976. 310 p. (in Russian)
- Zelensky I.E. On the frontal resistance of bodies immersed in a gas flow of supersonic velocity // Uch. Zap. Kharkov Univ., 1949, vol. 29, pp. 1–183.
- Karman T.F. Fundamentals of high-speed aerodynamics // in: General Theory of High Speed Aerodynamics / ed. by Sears W.R. Princeton: Univ. Press, 1954. xiv+758 p.
- Rinlgleb F. Exakte Losungen der Differentialgleichungen einer adiabatischen Gasstromung // Zeitschrift fur Angewandte Mathematik und Mechanik. Ingenieurwissenschaftaftliche Forschungsarbeiten, 1940, vol. 20, no. 4, pp. 185–198.
- Frankl F.I. On the formation of shock waves in subsonic flows with local supersonic velocities // PMM, 1947, iss. 11, pp. 199–202.
- Busemann A. The non-existence of transonic potential flow // Proc. of Symp. in Applied Mathematics, 1953, no. 4, pp. 29–40.
- Guderley G. On the Presence of Shocks in Mixed Subsonic-Supersonic Flow Patterns // Adv. in Appl. Mech., 1953, no. 3, pp. 145–184.
- Bers L. Results and conjectures in the mathematical theory of subsonic and transonic gas flows // Commun. on Pure&Appl. Math., 1954, no. 7, pp. 79–104.
- Morawetz C.S. On the non-existence of continuous transonic flows past profiles // Commun. on Pure &A ppl. Math., 1956, no. 9, pp. 45–68.
- Bers L. Mathematical Problems in Subsonic and Transonic Gas Dynamics. Moscow: Inostr. Lit-ra, 1961. 208 p. (in Russian)
- Sears W.R. Transonic potential flow of a compressible fluid // Appl. Phys., 1951, vol. 21, pp. 771–778.
- Golubev V.V. Lectures on Wing Theory. Moscow;Leningrad: GITTL, 1949. 480 p. (in Russian)
- Panzhenskiy V.A., Petrov A.S. On the flow in the local supersonic zone during transonic flow around an airfoil // Uch. Zap. TsAGI, 1987, vol. 18, no. 2, pp. 1–8.
- Lifshits Yu.B. On the theory of transonic flows around an airfoil // Uch. Zap. TsAGI, 1973, vol. IV, no. 5, pp. 1–8.
- Lyapunov S.V. Accelerated method of the Euler equations solution in transonic airfoil flow problem // Matem. Modelir., 1991, no. 4, pp. 83–92.
- Schlichting H., Gersten K. Boundary Layer Theory. Springer, 2004.
- Loitsyansky L.G. Fluid Mechanics. Moscow: Nauka, 1970. 904 p. (in Russian)
- Giles M.B., Cummings R.M. Wake integration for three-dimensional flowfield computations: Theoretical development // J. of Aircraft, 1999, vol. 36, no. 2, pp. 357–365.
- Hunt D.L., Cummings R.M., Giles M.B. Wake integration for three–dimensional flowfield computations: Applications // J. of Aircraft, 1999, no. 2, vol. 36, pp. 366–373.
- Petruzzelli N., Keane A.J. Wave drag estimation for use with panel codes // J. Aircraft, 2001, no.4, vol. 38, pp. 778–780.
- Cole J.D., Malmuth N.D. Wave drag due to lift for transonic airplanes // Proc. Roy. Soc. A, 2005, vol. 461, pp. 541–560.
- Gariépy M., Trépanier J.-Y. Improvements in accuracy and efficiency for a far–field drag prediction and decomposition method // AIAA, 2010, 2010–4678, pp. 1–15.
- Sudakov G.G. Determination of the components of aerodynamic drag of an aircraft in a transonic flow described by the Reynolds system of equations // Uch. Zap. TsAGI, 2016, vol. XLVII, no. 1, pp. 3–12.
- Toubin H., Bailly D. Development and application of a new unsteady far-field drag decomposition method // AIAA, 2014, 2014–2991, pp. 1–18.
- Van der Vooren J., Destarac D. Drag/thrust analysis of a jet-propelled transonic transport aircraft: Definition of physical drag components // Aerospace Sci.&Technol., 2004, vol. 8, pp. 545–556.
- Petrov A.S. Influence of real properties of gas on total aerodynamic forces at subsonic flow speeds // Thermophys. & Aeromech., 2004, vol. 11, no. 1, pp. 33–50.
Supplementary files
