Mathematical features of numerical simulation of non-stationary flow around the model in the shock tube
- Authors: Bosnyakov S.M.1, Gorbushin A.R.1, Matyash S.V.1, Mikhailov S.V.1
-
Affiliations:
- Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky
- Issue: Vol 88, No 6 (2024)
- Pages: 887-909
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/282877
- DOI: https://doi.org/10.31857/S0032823524060058
- EDN: https://elibrary.ru/IGRDMU
- ID: 282877
Cite item
Abstract
Different approaches of increased accuracy to the numerical solution of the problem about non-stationary flow around a cone model under in shock tube are investigated. It is shown that the computational methods based on dissipative numerical schemes of the second order lead to «smoothing» the physical oscillations of the solution and give significant errors. A comparison is performed. It shows the qualitative and quantitative correspondence of the numerical and experimental results at the start of the shock tube. The conclusion about the possibility of applying the proposed methodology in practice is made.
Full Text

About the authors
S. M. Bosnyakov
Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky
Author for correspondence.
Email: bosnyakov@tsagi.ru
Russian Federation, Zhukovsky
A. R. Gorbushin
Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky
Email: gorbushin@tsagi.ru
Russian Federation, Zhukovsky
S. V. Matyash
Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky
Email: bosnyakov@tsagi.ru
Russian Federation, Zhukovsky
S. V. Mikhailov
Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky
Email: mikhaylov@tsagi.ru
Russian Federation, Zhukovsky
References
- Bosniakov S. Experience in integrating CFD to the technology of testing models in wind tunnels // Progr. in Aerosp. Sci., 1998, no. 34, pp. 391–422.
- Neyland V., Bosniakov S., Glazkov S., Ivanov A., Matyash S., Mikhailov S., Vlasenko V. Conception of electronic wind tunnel and first results of its implementation // Progr. in Aerosp. Sci., 2001, vol. 37, no. 2, pp. 121–145.
- Bosnyakov S., Kursakov I., Lysenkov A., Matyash S., Mikhailov S., Vlasenko V., Quest J. Computational tools for supporting the testing of civil aircraft configurations in wind tunnels // Progr. in Aerosp. Sci., 2008, vol. 44, no. 2, pp. 67–120.
- Bosnyakov S.M., Neyland V.Ya., Vlasenko V.V., Kursakov I.A., Matyash S.V., Mikhailov S.V., Quest Yu. The experience of applying the numerical calculation results for the preparing and performing the tests in wind tunnels // Mathem. Simul., 2013, vol. 25, no. 9, pp. 43–62.
- Vos J.B., Rizzi A., Darracq D., Hirscheld E.H. Navier–Stokes solvers in European aircraft design // Progr. in Aerosp. Sci., 2002, vol. 38, pp. 601–697.
- Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows // AIAA Paper, 1992, no. 92–0439.
- Menter F.R. Zonal two-equation k-ω turbulence model for aerodynamic flows // AIAA Paper, 1993, no. 93–2906.
- Bezmenov V.Ya., Kolochinsky Yu.Yu. The design and characteristics of the TsAGI UT-1 hypersonic shock tube // Proc. of TsAGI, 1969, no. 9152.
- Gromyko Yu.V., Tsyryulnikov I.S., Maslov A.A. To develop a methodology for determining flow parameters in pulsed wind tunnels // Thermophys.&Aeromech., 2022, no. 5, pp. 695–708.
- Kotov M.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Performing the experiments on the flow around models in a hypersonic shock wind tunnel // Phys.-Chem. Kinetics in Gas Dyn., 2013, vol. 14, iss. 4. http://chemphys.edu.ru/issues/2013-14-4/articles/428/
- Reynolds A.J. Turbulent Flows in Engineering Applications. Moscow: Energia, 1979. 408 p.
- Hinze I.O. Turbulence. Its Mechanism and Theory. Moscow: Fizmatgiz, 1963. 680 p.
- Olsen M., Coakley T. The lag model, a turbulence model for non equilibrium flows // 15th AIAA Comput. Fluid Dyn. Conf., 2001, pp. 2564.
- Shugaev F.V. Interaction of Shock Waves with Perturbations. Moscow: MSU Pub., 1983. 96 p.
- Godunov S.K., Zabrodin A.V., Prokopov G.P. A difference scheme for two-dimensional non-stationary problems of gas dynamics and calculation of flow with a detached shock wave // J. Comp. Matem.&Math. Phys., 1961, vol. 1, no. 6, pp. 1020–1050.
- Godunov S.K., Prokopov G.P. About using movable grids in gasdynamic calculations // J. Comp. Matem.&Math. Phys., 1972, vol. 12, no. 2, pp. 429–440.
- Rusanov V.V. Calculation of the interaction between non-stationary shock waves and obstacles // J. Comp. Matem.&Math. Phys., 1961, vol. 1, no. 2, pp. 267–279.
- Makarov V.E. About the separation of discontinuity surfaces in the numerical solution of supersonic conical flows. // J. Comp. Matem.&Math. Phys., 1982, vol. 22, no. 5, pp. 1218–1226.
- Moretti G. Three-dimensional, supersonic, steady flows with any number of imbedded shocks // AIAA paper, 1974, no. 74–10.
- Kutler P., Lomax H. Shock capturing, finite difference approach to supersonic flows // J. Spacecraft&Rockets, 1971, vol. 8, no. 12, pp. 1175–1182.
- Quirk J.J. A contribution to the great Riemann solver debate // ICASE Rep., 1992, no. 92–64; Int. J. Numer. Meth. Fluids, 1994, vol. 18, pp. 555–574.
- Robinet J.-Ch., Gressier J., Casalis G., Moschetta J.-M. Shock wave instability and the carbuncle phenomenon: same intrinsic origin? // J. Fluid Mech., 2000, vol. 417, pp. 237–263.
- Ivanov M.Ya., Kraiko A.N. About approximation of discontinuous solutions using difference schemes of end-to-end computation // J. Comp. Matem.&Math. Phys., 1978, vol. 18, no. 3, pp. 780–783.
- Ostapenko V.V. On the convergence of difference schemes behind the front of a non-stationary shock wave // J. Comp. Matem.&Math. Phys., 1997, vol. 37, no. 10, pp. 1201–1212.
- Nishikawa H., Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers // J. Comput. Phys., 2008, vol. 227, pp. 2560–2581.
- Rodionov A.V. A numerical method for solving Euler equations with preserving the approximation on a deformed grid // J. Comp. Matem.&Math. Phys., 1996, vol. 36, no. 3, pp. 117–129.
- Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 2009.
- Van Leer B. Towards the ultimate conservative difference scheme. vol. A second-order sequel to Godunov’s method // J. Comput. Phys., 1979, vol. 32, pp. 101–136.
- Kolgan V.P. Using the minimum derivative principle in developing the finite-difference schemes for calculating discontinuous solutions of gas dynamics // Sci. Notes of TsAGI, 1972, vol. 3, no. 6, pp. 68–78.
- Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G.P. Numerical Solution of Gasdynamic Multidimensional Problems. Moscow: Nauka, 1976.
- LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Univ. Press, 2002.
- Suresh A., Huynh H.T. Accurate monotonicity-preserving schemes with Runge–Kutta time stepping // J. Comput. Phys., 1997, vol. 136, pp. 83–99.
- Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerical Methods. Moscow: BINOM, 2011. 636 p. (in Russian)
- Massey S.J., Abdol-Hamid K.S. Enhancement and validation of PAB3D for unsteady aerodynamics // AIAA Paper, 2003, no. 2003–1235.
- Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes // J. of Comput. Phys., 1988, vol. 77, no. 2, pp. 439–471.
- Gottlieb S., Shu C.-W., Tadmor E. Strong stability-preserving high-order time discretization methods // SIAM Rev., 2001, vol. 43, no. 1, pp. 89–112.
- Ruuth S.J., Spiteri R.J. Two barriers on strong-stability-preserving time discretization methods // J. of Sci. Comput., 2002, no. 17, pp. 211–220.
- Spiteri R.J., Ruuth S.J. A new class of optimal high-order strong-stability-preserving time discretization methods // SIAM J. on Numer. Anal., 2002, vol. 40, no. 2, pp. 469–491.
- Sidorenko D.A., Utkin P.S. The Cartesian grid method for numerical simulation of shock wave propagation in zones of complicated shape // Comput. Methods&Programm., 2016, vol. 17, pp. 353–364.
- Bazhenova Т. V., Gvozdeva L.G. Non-Stationary Interactions of Shock Waves. Moscow: Nauka, 1977.
- Jiang G.-S., Shu C.-W. Efficient implementation of weighted ENO schemes // J. of Comput. Phys., 1996, vol. 126, pp. 202–228.
- Balsara D.S., Shu C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy // J. of Comput. Phys., 2000, vol. 160, no. 2, pp. 405–452.
- Huang W.-F., Ren Y.-X., Jiang X. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids // Acta Mech. Sinica/Lixue Xuebao, 2018, vol. 34, no. 1, pp. 37–47.
- Avduevsky V.S. Method of calculating the spatial turbulent boundary layer in a compressible gas // Izv. AN SSSR, Mekh. i Mashinostr., 1962, no. 4. (in Russian)
- Glazkov S.A., Gorbushin A.R. Semenov A.V. Investigation of the aerodynamic characteristics of a 10 cone in a T-128 transonic wind tunnel // J. Inst. Eng. India Ser. C, 2021. https://doi.org/10.1007/s40032-021-00749-w.s
Supplementary files
