Necessary Conditions for Development of Inviscid Instabilities in a Vibrationally Excited Dissociating Gas

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access


For a plane flow of a vibrationally excited dissociating diatomic gas the necessary conditions of the existence of growing (neutral) inviscid perturbations, similar to the Rayleigh criterion of a “generalized” inflection point, are obtained. The corresponding formulas are presented for cases with a certain physical interpretation. In particular, the model of a vibrationally excited one-component gas is considered as the initial stage of thermal dissociation, as well as a wide spread model with one dissociation-recombination reaction. The case of a binary molecular-atomic mixture with a vibrationally excited molecular component and a “frozen” gas-phase dissociation-recombination reaction is considered as an intermediate one. Comparative numerical calculations were carried out, which showed, in particular, that under conditions of developed dissociation, the use of the criterion of the “generalized” inflection point does not take into account the specifics of the process. The wave numbers and phase velocities of the I and II inviscid modes calculated on its basis may differ significantly from the results obtained using the new necessary condition.

About the authors

Yu. N. Grigoryev

Federal Research Center for Information and Computational Technologies

Author for correspondence.
Russia, Novosibirsk

I. V. Ershov

Novosibirsk State Agrarian University

Author for correspondence.
Russia, Novosibirsk


  1. Линь Цзя-цзяо. Теория гидродинамической устойчивости. М.: Изд-во иностр. лит., 1958. 194 с.
  2. Drasin P.G., Reid G.H. Hydrodynamic Stability. Cambridge: Univ. Press, 2004. 605 p.
  3. Lees L. The Stability of the Laminar Boundary Layer in a Compressible Fluid. NACA Technical note, No. 1360. Washington: NACA, 1947. 169 p.
  4. Mack L.M. Boundary Layer Stability Theory. JPL Technical Rep., Document 900–277. Pasadena: California Instit. Technology, 1969. 272 p.
  5. Duck P.W., Erlebacher G., Hussaini M.Y. On the linear stability of compressible plane Couette flow // J. Fluid Mech. 1994. V. 258. P. 131–165.
  6. Григорьев Ю.Н., Ершов И.В. Линейная устойчивость невязкого сдвигового течения колебательно возбужденного двухатомного газа // ПММ. 2011. Т. 75. Вып. 4. С. 581–593.
  7. Григорьев Ю.Н., Ершов И.В. Линейная устойчивость течения Куэтта колебательно-возбуждениого газа. 1. Невязкая задача // ПМТФ. 2014. Т. 55. № 2. С. 80–93.
  8. Shen S.F. Effect of chemical reaction on the inviscid criterion for laminar stability of parallel flows // Proc. 5-th Midwest. Conf. Fluid Mech. Ann Arbor. 1957. P. 11–20.
  9. Гапонов С.А., Петров Г.В. Устойчивость пограничного слоя неравновесного диссоциирующего газа. Новосибирск: Наука, 2013. 95 с.
  10. Григорьев Ю.Н., Горобчук А.Г., Ершов И.В. Модель пограничного слоя колебательно-возбужденного диссоциирующего газа // Теплофиз. и аэромех. 2021. Т. 28. № 5. С. 667–689.
  11. Трикоми Ф. Дифференциальные уравнения. М.: Изд. иностр лит., 1962. 351 с.
  12. Григорьев Ю.Н., Ершов И.В. Асимптотическая теория кривой нейтральной устойчивости течения Куэтта сжимаемого и колебательно-возбужденного газа // ПМТФ. 2017. Т. 58. № 1. С. 3– 21.
  13. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 1. М.: Физматлит, 2003. 680 с.
  14. Лойцянский Л.Г. Механика жидкости и газа. М.; Л.: ГИТТЛ, 1950. 676 с.
  15. Григорьев Ю.Н., Ершов И.В. Линейная устойчивость сверхзвукового пограничного слоя релаксирующего газа на пластине // Изв. РАН. МЖГ. 2019. № 3. С. 3–15.

Supplementary files

Supplementary Files

Download (52KB)

Copyright (c) 2023 Ю.Н. Григорьев, И.В. Ершов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies