Characteristics of the Schottky barriers of two-terminal thin-film Al/nano-Si film/ITO structures


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The temperature dependence of the Schottky-barrier height and series resistance of two-terminal thin-film Al/nano-Si film/ITO structures are determined from the current—voltage (I–V) characteristics in the temperature range of 20–150°C. It is found that the form of the I–V characteristic at all investigated temperatures can be described by a model of two Schottky diodes connected back-to-back. For these diodes, the general formula is obtained, which allows the construction of functions approximating experimental curves with high accuracy. Based on this formula, a computational model is built, which generalizes the theoretical data obtained by S.K. Cheung and N.W. Cheung widely used for analyzing the I–V characteristics of single Schottky diodes. A technique is developed for calculating the Schottky-barrier heights in a system of two Schottky diodes connected back-to-back, their ideality factors, and the series resistance of the system. It is established that the barrier heights in the investigated temperature range are ~1 eV. According to the temperature dependence of the barrier height, such large values result from the presence of a SiOx (0 ≤ x ≤ 2) oxide layer at the nanoparticle boundaries. Charge carriers can overcome this layer by means of thermal excitation or tunneling. It is established that the intrinsic Schottky-barrier height of the Al/nc-Si film and nc-Si film/ITO junctions is ~0.1 eV. The activation dependences of the series resistance of the Al/nc-Si film/ITO structures and impedance spectra show that combined electric-charge transport related to ionic and electronic conductivity takes place in the structures under study. It is shown that the contribution of the electronic conductivity to the total transport process increases as the sample temperature is raised.

Об авторах

N. Kononov

Prokhorov Institute of General Physics

Автор, ответственный за переписку.
Email: nnk@kapella.gpi.ru
Россия, Moscow, 119991

S. Dorofeev

Faculty of Chemistry

Email: nnk@kapella.gpi.ru
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).