Formation of Macropores in n-Si upon Anodization in an Organic Electrolyte

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The photoelectrochemical etching of solar-grade n-type silicon in a 4% solution of HF in dimethylformamide is experimentally studied. The pore morphology, porosity, effective valence, and etching rate are examined in relation to the applied voltage, illumination intensity of the sample’s backside, and process duration. It is found that the anodization of n-Si in an organic electrolyte substantially differs from that in aqueous solutions. This is manifested in that, at a voltage exceeding the threshold value, in the so-called breakdown mode, macropores with vertical walls begin to multiply and branch intensively due to the appearance of side pores. The appearance of secondary pores is accompanied by an increase in porosity, a decrease in the propagation velocity of the porous front deeper into the substrate, and rapid transition to the electropolishing mode. In the breakdown mode at a low illumination level, a fractal structure of macropores propagating along certain crystallographic directions is observed: 〈100〉 and along the previously unobserved 〈111〉. It is demonstrated that the morphology of macropores can be controlled in the course of anodization by passing from one mode to another upon changing the external parameters: voltage or illumination. It is shown that using an organic electrolyte makes it possible to obtain macroporous membranes with a porosity substantially exceeding that of macroporous membranes formed in aqueous electrolytes under the same conditions.

Sobre autores

G. Li

Ioffe Institute

Email: east@mail.ioffe.ru
Rússia, St. Petersburg, 194021

S. Pavlov

Ioffe Institute

Email: east@mail.ioffe.ru
Rússia, St. Petersburg, 194021

E. Astrova

Ioffe Institute

Autor responsável pela correspondência
Email: east@mail.ioffe.ru
Rússia, St. Petersburg, 194021

N. Preobrazhenskiy

Ioffe Institute

Email: east@mail.ioffe.ru
Rússia, St. Petersburg, 194021


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies