Цель работы состоит в описании двух важнейших типов предельных множеств простейших косых произведений отображений интервала, фазовым пространством каждого из которых является компактная n-мерная клетка (n ≥ 2): во-первых, неблуждающего множества и, во-вторых, ω -предельных множеств траекторий. Методы. Предложен метод исследования неблуждающего множества (новый даже для двумерного случая), основанный на использовании понятия C0 - Ω-взрыва в непрерывных отображениях отрезка, и введенного в работе понятия C0- Ω-взрыва в семействе непрерывных отображений в слоях. Для описания ω-предельных множеств использована техника специальных рядов, построенных по траектории и содержащих информацию о ее асимптотическом поведении. Результаты. Дано полное описание неблуждающего множества непрерывного простейшего косого произведения отображений интервала, то есть непрерывного косого произведения на компактной n-мерной клетке, множество (наименьших) периодов периодических точек которого ограничено. Результаты, полученные при описании неблуждающего множества, использованы при изучении ω-предельных множеств. В работе дано описание топологической структуры ω-предельных множеств рассматриваемых отображений. Найдены достаточные условия, при выполнении которых ω-предельным множеством траектории является периодическая орбита, а также необходимые условия существования одномерных ω-предельных множеств. Заключение. Дальнейшее развитие техники C0- Ω-взрыва в семействе отображений в слоях позволит описать структуру неблуждающего множества косых произведений одномерных отображений, в частности, с замкнутым множеством периодических точек, заданных на простейших многообразиях произвольной конечной размерности. Дальнейшее развитие теории специальных, построенных в работе расходящихся рядов позволит перейти к описанию ω-предельных множеств произвольной размерности d, где 2 ≤ d ≤ n - 1, n ≥ 3, в простейших косых произведениях.