Trajectory attractors method for dissipative partial differential equations with small parameter

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to study the limit behaviour of trajectory attractors for some equations and systems from mathematical physics depending on a small parameter when this small parameter approaches zero. The main attention is given to the cases when, for the limit equation, the uniqueness theorem for a solution of the corresponding initial-value problem does not hold or is not proved. The following problems are considered: approximation of the 3D Navier–Stokes system using the Leray α-model, homogenization of the complex Ginzburg–Landau equation in a domain with dense perforation, and zero viscosity limit of 2D Navier–Stokes system with Ekman friction. Methods. In this paper, the method of trajectory dynamical systems and trajectory attractors is used that is especially effective in the study of complicated partial differential equations for which the uniqueness theorem for a solution of the corresponding initial-value problem does not hold or is not proved. Results. For all problems under the consideration, we obtain the limit equations and prove the Hausdorff convergence for trajectory attractors of the initial equations to the trajectory attractors of the limit equations in the appropriate topology when the small parameter tends to zero. Conclusion. In the work, we demonstrate that the method of trajectory attractors is highly effective in the study of dissipative equations of mathematical physics with small parameter. We succeed to find the limit equations and to prove the convergence of trajectory attractors of the considered equations to the trajectory attractors of the limit (homogenized) equations in the corresponding topology as small parameter is vanishes.

About the authors

Vladimir Viktorovich Chepyzhov

A. A. Harkevich Institute of Information Transmission Problems of the RAS

ORCID iD: 0000-0003-2472-8672
Bolshoy Karetny per. 19, build.1, Moscow

References

  1. Бабин А. В., Вишик М. И. Аттракторы эволюционных уравнений. М.: Наука, 1989. 296 с.
  2. Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd ed. Applied Mathematical Sciences, vol. 68. New York: Springer-Verlag, 1997. 650 p. doi: 10.1007/978-1-4612-0645-3.
  3. Vishik M. I., Chepyzhov V. V. Attractors for Equations of Mathematical Physics. American Mathematical Society Colloquium Publications, vol. 49. Providence, R.I.: American Mathematical Society, 2002. 364 p.doi: 10.1090/coll/049.
  4. Sell G. R. Global attractors for the three-dimensional Navier–Stokes equations // J. Dyn. Diff. Eq. 1996. Vol. 8, no. 1. P. 1–33. doi: 10.1007/BF02218613.
  5. Chepyzhov V. V., Conti M., Pata V. A minimal approach to the theory of global attractors // Discrete and Continuous Dyn. Sys. 2012. Vol. 32, iss. 6. P. 2079–2088. doi: 10.3934/dcds.2012.32.2079.
  6. Chepyzhov V. V., Vishik M. I. Trajectory attractors for evolution equations // C. R. Acad. Sci. Paris. 1995. Vol. 321. Serie I. P. 1309–1314.
  7. Chepyzhov V. V., Vishik M. I. Evolution equations and their trajectory attractors // J. Math.Pures Appl. 1997. Vol. 76, no. 10. P. 913–964. doi: 10.1016/S0021-7824(97)89978-3.
  8. Вишик М. И., Чепыжов В. В. Траекторные аттракторы уравнений математической физики // УМН. 2011. Т. 66, № 4. С. 3–102.
  9. Lions J.-L. Quelques Methodes de Resolutions des Problemes aux Limites non Lineaires. Paris:Dunod, Gauthier-Villars, 1969. 554 p.
  10. Albritton D., Brue E., Colombo M. Gluing non-unique Navier-Stokes solutions // Ann. PDE. 2023. Vol. 9, no. 2. 17. doi: 10.1007/s40818-023-00155-8.
  11. Cheskidov A., Holm D. D., Olson E., Titi E. S. On Leray-α model of turbulence // Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences. 2005. Vol. 461. P. 629–649. doi: 10.1098/rspa.2004.1373.
  12. Chepyzhov V. V., Titi E. S., Vishik M. I. On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier–Stokes system // Discrete and Continuous Dyn. Sys. 2007. Vol. 17, no. 3. P. 33–52.
  13. Чепыжов В. В. Об аппроксимации траекторного аттрактора 3D системы Навье–Стокса различными α-моделями гидродинамики // Матем. сб. 2016. Т. 207, № 4. С. 143–172. doi: 10.4213/sm8549.
  14. Бекмаганбетов К.А., Чепыжов В.В., Чечкин Г.А. Об аттракторах уравнений реакции– диффузии в пористой ортотропной среде // Докл. РАН. Матем., информ., проц. упр. 2021. Т. 498. С. 10–15. doi: 10.31857/S2686954321030036.
  15. Pedlosky J. Geophysical Fluid Dynamics. New York: Springer, 1979. doi: 10.1007/978-1-4684-0071-7.
  16. Ilyin A. A., Patni K., Zelik S. V. Upper bounds for the attractor dimension of damped Navier–Stokes equations in R2 // Discrete and Continuous Dyn. Sys. 2016. Vol. 36. P. 2085–2102. doi: 10.3934/dcds.2016.36.2085.
  17. Rosa R. The global attractor for the 2D Navier–Stokes flow on some unbounded domains // Nonlinear Anal. 1998. Vol. 32, iss. 1. P. 71–85. doi: 10.1016/S0362-546X(97)00453-7.
  18. DiPerna R., Lions P. Ordinary differential equations, Sobolev spaces and transport theory // Invent. Math. 1989. Vol. 98. P. 511–547. doi: 10.1007/BF01393835.
  19. Boyer F., Fabrie P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183. New York: Springer, 2013. 526 p. doi: 10.1007/978-1-4614-5975-0.
  20. Chepyzhov V. V., Ilyin A. A., Zelik S. V. Strong trajectory and global W1,p-attractors for the dampeddriven Euler system in R2 // Discrete Contin. Dyn. Syst. B. 2017. Vol. 22, iss. 5. P. 123–155. doi: 10.3934/dcdsb.2017109.
  21. Юдович В. И. Нестационарные течения идеальной несжимаемой жидкости // Ж. Выч. Мат. Физ. 1963. Т. 3. С. 1032–1066.
  22. Ильин А. А., Чепыжов В. В. О сильной сходимости аттракторов уравнений Навье–Стокса в пределе исчезающей вязкости // Матем. заметки. 2017. Т. 101, № 4. С. 635–639. doi: 10.4213/mzm11457.
  23. Chepyzhov V. V., Ilyin A. A., Zelik S. V. Vanishing viscosity limit for global attractors for the damped Navier-Stokes system with stress free boundary conditions // Physica D. 2018. Vol. 376–377. P. 31–38. doi: 10.1016/j.physd.2017.08.005.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).