Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection

Cover Page

Cite item

Full Text

Abstract

The purpose of the work is to study the groups of basic automorphisms of chaotic Cartan foliations with Ehresmann connection. Cartan foliations form a category where automorphisms preserve not only the foliation, but also its transverse Cartan geometry. The group of basic automorphisms of a foliation is the quotient group of the group of all automorphisms of this foliation by the normal subgroup of leaf automorphisms with respect to which each leaf is invariant. Cartan foliations include such wide classes of foliations as pseudo-Riemannian, Lorentzian, and foliations with transversal affine connection. No restrictions are imposed on the dimension of either the foliation or the foliated manifold. Compactness of the foliated manifold is not assumed. Methods. The proof of the structure theorem for chaotic Cartan foliations is based on the application of the foliated bundle construction, commonly used in the theory of foliations with transverse geometries. Results. The main result of this paper is the theorem stating that the group of basic automorphisms of any chaotic Cartan foliation with Ehresmann connection admits the structure of a Lie group and finding estimates for the dimension of this group. In particular, it is proved that if the set of closed leaves is countable, then the group of basic automorphisms of such a foliation is countable. Conclusion. In this paper, we prove a criterion according to which the chaoticity of a Cartan foliation of type (G, H) is equivalent to the chaoticity of a locally free action of the group H on the associated parallelizable manifold. Thus, the problem of the existence of chaos in Cartan foliations with Ehresmann connection reduces to the same problem for locally free actions of a Lie group on parallelizable manifolds.  

About the authors

Nina Ivanovna Zhukova

National Research University "Higher School of Economics"

ORCID iD: 0000-0002-4553-559X
Scopus Author ID: 16308609800
ul. Myasnitskaya 20, Moscow, 101000, Russia

Kseniya Igorevna Sheina

National Research University "Higher School of Economics"

ORCID iD: 0000-0001-5742-7476
SPIN-code: 3202-3005
ResearcherId: M-4554-2015
ul. Myasnitskaya 20, Moscow, 101000, Russia

References

  1. Кобаяси Ш. Группы преобразований в дифференциальной геометрии. М.: Наука, 1986. 223 с.
  2. Sheina K. I., Zhukova N. I. The groups of basic automorphisms of complete cartan foliations // Lobachevskii J. Math. 2018. Vol. 39. P. 271–280. doi: 10.1134/S1995080218020245.
  3. Leslie J. A remark on the group of automorphisms of a foliation having a dense leaf // J. Diff. Geom. 1972. Vol. 7, no. 3–4. P. 597–601. doi: 10.4310/jdg/1214431177.
  4. Белько И. В. Аффинные преобразования трансверсальной проектируемой связности на многообразии со слоением // Мат. сборник. 1982. Т. 117, № 2. С. 181–195.
  5. Hector J., Macias-Virgos E. Diffeological groups // Reseach and Exposition in Math. 2002. Vol. 25. P. 247–260.
  6. Blumenthal R. A., Hebda J. J. Ehresmann connection for foliations // Indiana Univ. Math. J. 1984. Vol. 33, no. 4. P. 597–611.
  7. Bazaikin Y. V., Galaev A. S., Zhukova N. I. Chaos in Cartan foliations // Chaos. 2020. Vol. 30, no. 10, 103116. P. 1–9. doi: 10.1063/5.0021596.
  8. Churchill R. C. On defining chaos in the absence of time. In: Hobill D., Burd A., Coley A. (eds) Deterministic Chaos in General Relativity. NATO Science Series. B 332. Boston: Springer, 1994. P. 107–112. doi: 10.1007/978-1-4757-9993-4_6.
  9. Devaney R. L. An Introduction to Chaotic Dynamical Systems. Menlo Park: The Benjamin/ Cummings Publishing Co., Inc., 1986. 320 p.
  10. Zhukova N. I. Chaotic foliations with Ehresmann connection // Journal of Geometry and Physics. 2024. Vol. 199. 105166. doi: 10.1016/j.geomphys.2024.105166.
  11. Жукова Н. И. Минимальные множества картановых слоений // Труды МИАН. 2007. Т. 256, № 1. С. 115–147. doi: 10.1134/S0081543807010075.
  12. Molino P. Riemannian Foliations. Progress in Mathematics, vol. 73. Boston: Birkhauser, 1988. 339 p.
  13. Kobayashi Sh., Nomizu K. Foundations of differential geometry I. New York–London: Interscience publ., 1969.
  14. Hermann R. The differential geometry of foliations // Ann. of Math. 1960. Vol. 72. Р. 445–457.
  15. Жукова Н. И. Структура римановых слоений со связностью Эресмана // Журнал СВМО. 2018. Т. 20, № 4. С. 395–407.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).