On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model

Cover Page

Cite item

Full Text

Abstract

The topic of the paper — Lorenz-type attractors in multidimensional systems. We consider a six-dimensional model that describes convection in a layer of liquid, taking into account impurities in the atmosphere and liquid, as well as the rotation of the Earth. The main purpose of the work is to study bifurcations in the corresponding system and describe scenarios for the emergence of chaotic attractors of various types. Results. It is shown that in the system under consideration, both a classical Lorenz attractor (the theory of which was developed in the works of Afraimovich–Bykov–Shilnikov) and an attractor of a new type, visually similar to the Lorenz attractor, but containing a symmetric pair of equilibrium states, can arise. It has been established that the Lorenz attractor in this system is born as a result of the classical scenario proposed by L. P. Shilnikov. We propose a new scenario for the emergence of an attractor of the second type via bifurcations inside the Lorenz attractor. In the paper we also discuss homoclinic and heteroclinic bifurcations that inevitably arise inside the found attractors, as well as their possible pseudohyperbolicity.  

About the authors

Error Mikhaylovich Error

National Research University "Higher School of Economics"

ORCID iD: 0009-0008-6910-5528
ul. Myasnitskaya 20, Moscow, 101000, Russia

Vladislav Andreevich Koryakin

National Research University "Higher School of Economics"

ORCID iD: 0000-0001-5640-8345
ul. Myasnitskaya 20, Moscow, 101000, Russia

Alexey Olegovich Kazakov

National Research University "Higher School of Economics"

ResearcherId: L-8056-2015
ul. Myasnitskaya 20, Moscow, 101000, Russia

References

  1. Lorenz E. N. Deterministic nonperiodic flow // Journal of atmospheric sciences. 1963. Т. 20, № 2. С. 130–141. doi: 10.18500/0869-6632-00313310.1175/1520-0469(1963)0202.0.co;2.
  2. Афраймович В. С., Быков В. В., Шильников Л. П. О возникновении и структуре аттрактора Лоренца // ДАН СССР. 1977. T. 234, № 2. С. 336–339.
  3. Афраймович В. С., Быков В. В., Шильников Л. П. О притягивающих негрубых множествах типа аттрактора Лоренца // Труды ММО. 1982. Т. 44. С. 150–212.
  4. Guckenheimer J., Williams R. F. Structural stability of Lorenz attractors // Publications Mathemati-ques de l’IHES. 1979. Vol. 50. P. 59-72. ´ doi: 10.1007/BF02684769.
  5. Marsden J. E., McCracken M., Guckenheimer J. A Strange, Strange Attractor // In: The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences, vol. 19. New York: Springer, 1976. С. 368–381. doi: 10.1007/978-1-4612-6374-6_25.
  6. Williams R. F. The structure of Lorenz attractors // Publications Mathematiques de l’IHES. 1979. Vol. 50. P. 73–99. doi: 10.1007/BF02684770.
  7. Tucker W. The Lorenz attractor exists // Comptes Rendus de l’Academie des Sciences-Series I-Mathematics. 1999. Vol. 328, no. 12. P. 1197–1202. doi: 10.1016/s0764-4442(99)80439-x.
  8. Gonchenko S. V., Kazakov A. O., Turaev D. Wild pseudohyperbolic attractor in a four-dimensional Lorenz system // Nonlinearity. 2021. Vol. 34(2). P. 1–30.
  9. Тураев Д. В., Шильников Л. П. Пример дикого странного аттрактора // Матем. Сборник. 1998. Т. 189, № 2. С. 137–160.
  10. Тураев Д. В., Шильников Л. П. Псевдогиперболичность и задача о периодическом возмущении аттракторов лоренцевского типа // Доклады Академии наук. 2008. Т. 418, № 1. С. 23–27.
  11. Moon S., Seo J. M., Beom-Soon H., Park J. A physically extended Lorenz system // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019. Vol. 29, no. 6. P. 063129. doi: 10.1063/1.5095466.
  12. Dhooge A., Govaerts W., Kuznetsov Y. A., Meijer H. G. E., Sautois B. New features of the software MatCont for bifurcation analysis of dynamical systems // Mathematical and Computer Modelling of Dynamical Systems. 2008. Vol. 14, no. 2. P. 147–175. doi: 10.1080/13873950701742754.
  13. De Witte V., Govaerts W., Kuznetsov Y. A. Friedman M. Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB // ACM Trans. Math. Software. 2012. Vol. 38, iss. 3. P. 1–34. doi: 10.1145/2168773.2168776.
  14. Шильников Л. П. Теория бифуркаций и модель Лоренца // В кн.: Марсден Дж., Мак-Кракен М. Бифуркации рождения цикла и ее приложения. М.: Мир, 1980. С. 317–335.
  15. Benettin G., Galgani L., Giorgilli A., Strelcyn M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory // Meccanica. 1980. Vol. 15, iss. 1. P. 9–20.
  16. Lyubimov D. V., Zaks M. A. Two mechanisms of the transition to chaos in finite-dimensional models of convection // Physica D: Nonlinear Phenomena. 1983. Vol. 9, iss. 1–2. P. 52–64. doi: 10.1007/BF01237679.
  17. Rovella A. The dynamics of perturbations of the contracting Lorenz attractor // Bol. da Soc. Bras. de Matematica Bull. Braz. Math. Soc. 1993. Vol. 24. P. 233–259. ´
  18. Barrio R., Shilnikov A., Shilnikov L. Kneadings, symbolic dynamics and painting Lorenz chaos // International Journal of Bifurcation and Chaos. 2012. Vol. 22, no. 04. P. 1230016. doi: 10.1142/S0218127412300169.
  19. Xing T., Barrio R., Shilnikov A. Symbolic quest into homoclinic chaos // International Journal of Bifurcation and Chaos. 2014. Vol. 24, no. 08. P. 1440004. doi: 10.1142/S0218127414400045.
  20. Pusuluri K., Shilnikov A. Homoclinic chaos and its organization in a nonlinear optics model // Physical Review E. 2018. Vol. 98, no. 4. P. 040202. doi: 10.1103/PhysRevE.98.040202.
  21. Pusuluri K., Meijer H. G. E., Shilnikov A. L. Homoclinic puzzles and chaos in a nonlinear laser model // Communications in Nonlinear Science and Numerical Simulation. 2021. Vol. 93. P. 105503.
  22. Быков В. В. О структуре окрестности сепаратрисного контура с седлофокусом // В кн.: Методы качественной теории дифференциальных уравнений / Под ред. Е. А. ЛеонтовичАндроновой). Горький: ГГУ, 1978. С. 3–32.
  23. Bykov V. V. The bifurcations of separatrix contours and chaos // Physica D: Nonlinear Phenomena. 1993. Vol. 62, no. 1–4. P. 290–299.
  24. Быков В. В., Шильников А. Л. О границах области существования аттрактора Лоренца // Методы качеств, теории дифференц. уравнений. 1989. С. 151–159.
  25. Zaks M. A., Lyubimov V. Anomalously fast convergence of a doubling-type bifurcation chain in systems with two saddle equilibria // Zh. Eksp. Teor. Fiz. 1984. Vol. 87. P. 1696–1699.
  26. Zaks M. A., Lyubimov D. V. Bifurcation sequences in the dissipative systems with saddle equilibria // Banach Center Publications. 1989. Vol. 23, no. 1. P. 367–380. doi: 10.4064/-23-1-367-380.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).