Structural features and electrical properties of si(al) thermal migration channels for high-voltage photovoltaic converters

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of a study of the structural features and electrical properties of Si(Al) through thermomigration p-channels in a silicon wafer are presented. Structural studies were performed using X-ray methods of projection topography, diffraction reflection curves and scanning electron microscopy. It is shown that the channel-matrix interface is coherent without the formation of mismatch dislocations. The possibility of using an array of thermomigration p-channels of 15 elements to form a monolithic photovoltaic solar module in a Si(111) silicon wafer based on p-channels with a width of 100 microns with walls in the plane is shown. The monolithic solar module has a conversion efficiency of 13.1%, an idle voltage of 8.5 V and a short-circuit current density of 33 mA/cm².

全文:

受限制的访问

作者简介

A. Lomov

Valiev Institute of Physics and Technology of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lomov@ftian.ru
俄罗斯联邦, Moscow

B. Seredin

Platov South Russian State Polytechnic Institute (NPI)

Email: lomov@ftian.ru
俄罗斯联邦, Novocherkassk

S. Martyushov

Technological Institute for Superhard and Novel Carbon Materials

Email: lomov@ftian.ru
俄罗斯联邦, Troitsk

A. Tatarintsev

Valiev Institute of Physics and Technology of Russian Academy of Sciences

Email: lomov@ftian.ru
俄罗斯联邦, Moscow

V. Popov

Platov South Russian State Polytechnic Institute (NPI)

Email: lomov@ftian.ru
俄罗斯联邦, Novocherkassk

A. Malibashev

Platov South Russian State Polytechnic Institute (NPI)

Email: lomov@ftian.ru
俄罗斯联邦, Novocherkassk

参考

  1. Markvart T., Castafier L. Practical Handbook of Photovoltaics: Fundamentals and Applications. Oxford — New York — Tokyo: Elsevier Science Ltd., 2003. 984 р.
  2. Philipps S.P., Cristóbal López A., Martí Vega A., López L. Present Status in the Development of III—V Multi-Junction Solar Cells, Next Generation of Photovoltaics, Springer Series in Optical Sciences. 2012. V. 165. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-23369-2_1
  3. Da X., Chen C., Deng Y., Wood A., Yang G., Fei C., Huang J. Pathways to High Efficiency Perovskite Monolithic Solar Modules // PRX ENERGY. 2022. V. 1. Р. 013004. https://doi.org/10.1103/PRXEnergy.1.013004
  4. Ryan C.Ch., Remco W.A., Havenith Jan. C., Hummelen L., Koster Jan A., Loi M.A. Modern Plastic Solar Cells: materials, mechanisms and modeling // Materials Today. 2013. V. 16. P. 281.
  5. France R.M., Geisz J.F., Song T., Olavarria W., Young M., Kibbler A., Steiner M.A. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices // Joule. 2022. V. 6. No. 5. Р. 1121–1135. https://doi.org/10.1016/j.joule.2022.04.024
  6. Anthony T.R., Cline H.E. Lamellar devices processed by thermomigration // J. Appl. Phys. 1977. V. 48. P. 3943–3949.
  7. Pfann W.G. Zone Melting. 2nd Ed. New York: Wiley, 1963. 236 p.
  8. Lozovskii V.N., Lunin L.S., Popov V.P. Zonnaya perekristallizaciya gradientom temperatury poluprovodnikovyh materialov. M.: Metallurgiya, 1987. 232 p. [in Russian].
  9. Lozovskii V.N., Udaynskaya A.I. Investigation of the Mechanism of Silicon Crystallization from an Aluminum-Silicon Melt by Temperature Gradient Zone Melting // Sov. Phys. Crystallography. 1968. V. 13. No. 3. P. 565–566.
  10. Lozovskii V.N., Popov V.P. On the stability of the growth front during crystallization by the moving solvent method // Sov. Phys. Crystallography. 1970. V. 15. No. 1. P. 149–154.
  11. Cline H.E., Anthony T.R. Thermomigration of aluminum-rich liquid wires through silicon // J. Appl. Phys. 1976. V. 47. No. 6. P. 2332–2336.
  12. Buchin E.Y., Denisenko Y.I., Simakin S.G. The structure of thermomigration channels in silicon // Tech. Phys. Lett. 2004. V. 30. No. 3. P. 205–207.
  13. Norskog A.C., Warner Jr.R.M. A horizontal monolithic series-array solar battery employing thermomigration // J. Appl. Phys. 1981. V. 52. No. 3. P. 1552–1554.
  14. Lozovskii V.N., Lomov A.A., Lunin L.S., Seredin B.M., Chesnokov Yu.M. Crystal Defects in Solar Cells Produced by the Method of Thermomigration // Semiconductors. 2017. V. 51. No. 3. P. 285–289.
  15. Eslamian M., Saghir M.Z. Thermodiffusion Applications in MEMS, NEMS and Solar Cell Fabrication by Thermal Metal Doping of Semiconductors // FDMP. 2012. V. 8. No. 4. P. 353–380.
  16. Renyan W.R. Silicon Semiconductor Technology. McGraw-Hill: McGRAW — Hill Book Company, 1965. 277 p.
  17. Jasurbek G., Rayimjon A., Bobur R. Effect of the Local Mechanical Stress on Properties of Silicon Solar Cell // J. of Mech. Eng. Res. and Devel. 2021. V. 44. No. 9. P. 125–133.
  18. Lomov A.A., Punegov V.I., Seredin B.M. Laue X-ray diffraction studies of the structural perfection of Al-doped thermomigration channels in silicon // J. Appl. Cryst. 2021. V. 54. P. 588–596. https://doi.org/10.1107/S1600576721001473
  19. Lomov A.A., Punegov V.I., Belov A.Yu., Seredin B.M. High resolution X-ray Bragg diffraction in Al-doped thermomigration channels in silicon // J. Appl. Cryst. 2022. V. 55. P. 558–568. https://doi.org/10.1107/S1600576722004319
  20. Morillon B. Etude de la thermomigration de l’aluminium dans le silicium pour la réalisation industrielle de murs d’isolation dans les composants de puissance bidirectionnels. Doct. Thesis, Toulouse: INSA de Toulouse, 2002. https://tel.archives-ouvertes. fr/tel-00010945/
  21. Seredin B.M., Lomov A.A., Zaichenko A.N., Gavrus I.V., Pashchenko A.S., Malibashev A.V., Ruban L.V. Elektricheskie svojstva kremnievyh vysokovol’tnyh fotopreobrazovatelej na osnove skvoznyh termomigracionnyh kanalov // Fizika. Sankt-Peterburg: Politekh-Press, 2021. P. 456–458 [in Russian].
  22. Seredin B.M., Popov V.P., Gavrus I.V., Zaichenko A.N. Primenenie lokal’noj perekristallizacii kremniya alyuminiem v fotovol’taike // Mokerovskie chteniya. Moskva: NIYAU MIFI, 2023. P. 146–147 [in Russian].
  23. Lozovskij V.N., Popov V.P., Darovskij N.I. Startovaya nestabil’nost’ linejnyh i tochechnyh zon pri zonnoj plavke s gradientom temperatury. Sbornik Trudov, Kristallizaciya i Svojstva Kristallov. Novocherkassk, 1970. V. 208. P. 39–43 [in Russian].
  24. Poluhin A.S. Termomigraciya neorientirovannyh linejnyh zon v kremnievyh plastinah (100) dlya proizvodstva chipov silovyh poluprovodnikovyh priborov // Komponenty i tekhnologii. 2008. No. 11. P. 97–100 [in Russian].
  25. Yoshikawa T., Morita K. Solid Solubilities and Thermodynamic Properties of Aluminum in Solid Silicon // J. Elect. Society. 2003. V. 150. No. 8. https//doi: 10.1149/1.1588300
  26. Seredin B. M., Kuznetsov V. V., Lomov A. A., Zaichenko A.N., Martyushov S.Yu. Precision silicon doping with acceptors by temperature gradient zone melting // J. Phys: Conf. Series. 2019. P. 39–46.
  27. Bowen D.K., Tanner B.K. High Resolution X-ray Diffractometry and Topography. London, Bristol: Taylor & Francis, 1998. 252 p.
  28. Sah C.T., Noyce R.N., Shockley W. Carrier Generation and Recombination in p—n Junction and p—n Junction Characteristics // Proceedings of the IRE. 1957. V. 45. No. 9. P. 1228–1243.
  29. Sze S. M., Kwok K. Ng. Physics of semiconductor devices // A. John Wiley & Sons. Inc. Publ. 2007. 832 p.
  30. Lomov A.A., Seredin B.M., Martyushov C. Yu., Zaichenko A.N., Shul’pina I.L. The Formation and Structure of Thermomigration Silicon Channels Doped with Ga // Technical Physics. 2021. V. 66. No. 3. P. 453–460. https://doi.org/10.1134/S1063784221030178

补充文件

附件文件
动作
1. JATS XML
2. Fig.1.

下载 (142KB)
3. Fig.2.

下载 (101KB)
4. Fig.3.

下载 (428KB)
5. Fig.4.

下载 (247KB)
6. Fig.5.

下载 (376KB)
7. Fig.6.

下载 (92KB)
8. Fig.7.

下载 (164KB)
9. Fig.8.

下载 (164KB)
10. Fig.9.

下载 (101KB)
11. Fig.10.

下载 (162KB)
12. Fig.11.

下载 (215KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##