Oxide Memristors for ReRAM: Approaches, Characteristics, and Structures

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This review focuses on oxide memristors for resistive random access memory (ReRAM). Possi-ble practical implementations of ReRAM and the problem of leakage through neighboring elements in ReRAM are considered. The main types of resistive switching in memristors are briefly described and the main mechanisms of resistive switching are analyzed. The main characteristics of memristors required for ReRAM are also described. Some memristor structures based on oxides of titanium, silicon, tantalum, and hafnium, as well as multilayer oxide structures are analyzed. The current problems in the creation of ReRAM are highlighted.

Негізгі сөздер

Авторлар туралы

A. Isaev

Valiev Institute of Physics and Technology, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: isaev.ag@phystech.edu
Moscow, 117218 Russia; Dolgoprudny, 141701 Russia

O. Permyakova

Valiev Institute of Physics and Technology, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: isaev.ag@phystech.edu
Moscow, 117218 Russia; Dolgoprudny, 141701 Russia

A. Rogozhin

Valiev Institute of Physics and Technology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: isaev.ag@phystech.edu
Moscow, 117218 Russia

Әдебиет тізімі

  1. Pan F., Gao S., Chen C. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance // Mater. Sci. Eng. R Rep. 2014. V. 83. P. 1–59.
  2. Chua L. Memristor – the missing circuit element // IEEE Trans. Circuit Theory. 1971. V. 18. № 5. P. 507–519.
  3. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications / ed. Ielmini D., Waser R. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016.
  4. Govoreanu B., Kar G.S., Chen Y.-Y. 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation // 2011 International Electron Devices Meeting. Washington, DC, USA: IEEE, 2011. P. 31.6.1–31.6.4.
  5. Kwon D.-H., Kim K.M., Jang J.H. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory // Nat. Nanotechnol. 2010. V. 5. № 2. P. 148–153.
  6. Illarionov G.A., Morozova S.M., Chrishtop V.V. Memristive TiO2: Synthesis, Technologies, and Applications // Front. Chem. 2020. V. 8. P. 724.
  7. Sawa A., Fujii T., Kawasaki M. Colossal Electro-Resistance Memory Effect at Metal/La2CuO4 Interfaces // Jpn. J. Appl. Phys. 2005. V. 44. № 40. P. L1241–L1243.
  8. Yoon J.H., Zhang J., Lin P. A Low-Current and Analog Memristor with Ru as Mobile Species // Adv. Mater. 2020. V. 32. № 9. P. 1904599.
  9. Park M.R., Abbas Y., Abbas H. Resistive switching characteristics in hafnium oxide, tantalum oxide and bilayer devices // Microelectron. Eng. 2016. V. 159. P. 190–197.
  10. Kurnia F., Liu C., Jung C.U. The evolution of conducting filaments in forming-free resistive switching Pt/TaOx/Pt structures // Appl. Phys. Lett. 2013. V. 102. № 15. P. 152902.
  11. Jiang H., Han L., Lin P. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor // Sci. Rep. 2016. V. 6. № 1. P. 28525.
  12. Liu T., Yan T.H., Scheuerlein R. A 130.7-mm2 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology // IEEE J. Solid-State Circuits. 2014. V. 49. № 1. P. 140–153.
  13. Fackenthal R., Kitagawa M., Otsuka W. A 16Gb ReRAM with 200 MB/s write and 1 GB/s read in 27 nm technology // 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco, CA, USA: IEEE, 2014. P. 338–339.
  14. Li H., Wang S., Zhang X., Wang W., Yang R., Sun Z. Memristive Crossbar Arrays for Storage and Computing Applications // Adv. Intell. Syst. 2021. V. 3. № 9. P. 2100017.
  15. Pi S., Li C., Jiang H. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension // Nat. Nanotechnol. 2019. V. 14. № 1. P. 35–39.
  16. Torrezan A.C., Strachan J.P., Medeiros-Ribeiro G. Sub-nanosecond switching of a tantalum oxide memristor // Nanotechnology. 2011. V. 22. № 48. P. 485203.
  17. Lee H.Y., Chen Y.S., Chen P.S. Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance // 2010 International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2010. P. 19.7.1–19.7.4.
  18. Zahoor F., Azni Zulkifli T.Z., Khanday F.A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications // Nanoscale Res. Lett. 2020. V. 15. № 1. P. 90.
  19. Baek I.G., Park C.J., Ju H. Realization of vertical resistive memory (VRRAM) using cost effective 3D process // 2011 International Electron Devices Meeting. Washington, DC, USA: IEEE, 2011. P. 31.8.1–31.8.4.
  20. Meyer R., Schloss L., Brewer J. Oxide dual-layer memory element for scalable non-volatile cross-point memory technology // 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS). Pacific Grove, CA, USA: IEEE, 2008. P. 1–5.
  21. Zidan M.A., Fahmy H.A.H., Hussain M.M. Memristor-based memory: The sneak paths problem and solutions // Microelectron. J. 2013. V. 44. № 2. P. 176–183.
  22. Maevsky O.V., Pisarev A.D., Busygin A.N., Udovichenko S.Yu. Complementary memristive diode cells for the memory matrix of a neuromorphic processor // Int. J. Nanotechnol. 2018. V. 15. № 4/5. P. 388.
  23. Son M., Lee J., Park J. Excellent Selector Characteristics of Nanoscale VO2 for High-Density Bipolar ReRAM Applications // IEEE Electron Device Lett. 2011. V. 32. № 11. P. 1579–1581.
  24. Chen A. Analysis of Partial Bias Schemes for the Writing of Crossbar Memory Arrays // IEEE Trans. Electron Devices. 2015. V. 62. № 9. P. 2845–2849.
  25. Li C., Han L., Jiang H. Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors // Nat. Commun. 2017. V. 8. № 1. P. 15666.
  26. Lee M.-J., Lee C.B., Lee D. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures // Nat. Mater. 2011. V. 10. № 8. P. 625–630.
  27. Sharath S.U., Vogel S., Molina-Luna L. Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices // Adv. Funct. Mater. 2017. V. 27. № 32. P. 1700432.
  28. Nardi F., Balatti S., Larentis S. Complementary switching in metal oxides: Toward diode-less crossbar RRAMs // 2011 International Electron Devices Meeting. Washington, DC, USA: IEEE, 2011. P. 31.1.1–31.1.4.
  29. Lanza M., Wong H.-S.P., Pop E. Recommended Methods to Study Resistive Switching Devices // Adv. Electron. Mater. 2019. V. 5. № 1. P. 1800143.
  30. Shi Y., Ji Y., Sun H., Hui F., Hu J., Wu Y., Fang J. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles // Sci. Rep. 2015. V. 5. № 1. P. 11232.
  31. Hsu A., Wang H., Kim K.K., Kong J., Palacios T. Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance // IEEE Electron Device Lett. 2011. V. 32. № 8. P. 1008–1010.
  32. Sirotkin V.V. Computer Investigation of the Influence of Metal Contact Inhomogenees on Resistive Switching in a Heterostructure Based on Bismuth Selenide // Russ. Microelectron. 2021. V. 50. № 5. P. 326–332.
  33. Lanza M., Bersuker G., Porti M., Miranda E., Nafría M., Aymerich X. Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries // Appl. Phys. Lett. 2012. V. 101. № 19. P. 193502.
  34. Bobylev A.N., Udovichenko S.Yu. Electrical properties of a TiN/Ti x Al1 – xOy /TiN memristor device manufactured by magnetron sputtering // Russ. Microelectron. 2016. V. 45. № 6. P. 396–401.
  35. Lei B., Kwan W.L., Shao Y., Yang Y. Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices // Org. Electron. 2009. V. 10. № 6. P. 1048–1053.
  36. He C.L., Zhuge F., Zhou X.F., Li M., Zhou G.C., Liu Y.W., Wang J.Z. Nonvolatile resistive switching in graphene oxide thin films // Appl. Phys. Lett. 2009. V. 95. № 23. P. 232101.
  37. Liu X., Biju K.P., Bourim E.M., Park S., Lee W., Shin J., Hwang H. Low programming voltage resistive switching in reactive metal/polycrystalline Pr0.7Ca0.3MnO3 devices // Solid State Commun. 2010. V. 150. № 45–46. P. 2231–2235.
  38. Yang Y.C., Chen C., Zeng F. Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism // J. Appl. Phys. 2010. V. 107. № 9. P. 093701.
  39. Wang T.-Y., Meng J.-L., Li Q.-X., Chen L., Zhu H., Sun Q.-Q., Ding S.-J., Zhang D.W. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique // J. Mater. Sci. Technol. 2021. V. 60. P. 21–26.
  40. Srivastava S., Thomas J.P., Leung K.T. Programmable, electroforming-free TiOx/TaOx heterojunction-based non-volatile memory devices // Nanoscale. 2019. V. 11. № 39. P. 18159–18168.
  41. Sawa A. Resistive switching in transition metal oxides // Mater. Today. 2008. V. 11. № 6. P. 28–36.
  42. Fu D., Xie D., Feng T. Unipolar Resistive Switching Properties of Diamondlike Carbon-Based RRAM Devices // IEEE Electron Device Lett. 2011. V. 32. № 6. P. 803–805.
  43. Permyakova O.O., Rogozhin A.E. Simulation of Resistive Switching in Memristor Structures Based on Transition Metal Oxides // Russ. Microelectron. 2020. V. 49. № 5. P. 303–313.
  44. Nandakumar S.R., Minvielle M., Nagar S. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States // Nano Lett. 2016. V. 16. № 3. P. 1602–1608.
  45. Hirose Y., Hirose H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S 3films // J. Appl. Phys. 1976. V. 47. № 6. P. 2767–2772.
  46. Yang Y., Zhang X., Gao M., Zeng F., Zhou W., Xie S., Pan F. Nonvolatile resistive switching in single crystalline ZnO nanowires // Nanoscale. 2011. V. 3. № 4. P. 1917.
  47. Valov I., Waser R., Jameson J.R. Electrochemical metallization memories—fundamentals, applications, prospects // Nanotechnology. 2011. V. 22. № 25. P. 254003.
  48. Peng S., Zhuge F., Chen X., Zhu X., Hu B., Pan L., Chen B. Mechanism for resistive switching in an oxide-based electrochemical metallization memory // Appl. Phys. Lett. 2012. V. 100. № 7. P. 072101.
  49. Sakamoto T., Lister K., Banno N., Hasegawa T., Terabe K., Aono M. Electronic transport in Ta2O5 resistive switch // Appl. Phys. Lett. 2007. V. 91. № 9. P. 092110.
  50. Jeong D.S., Thomas R., Katiyar R.S., Scott J.F., Kohlstedt H., Petraru A., Hwang C.S. Emerging memories: resistive switching mechanisms and current status // Rep. Prog. Phys. 2012. V. 75. № 7. P. 076502.
  51. Wang S.-Y., Lee D.-Y., Huang T.-Y., Wu J.-W., Tseng T.-Y. Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2 -based RRAM with embedded Mo layer // Nanotechnology. 2010. V. 21. № 49. P. 495201.
  52. Kim K.M., Jeong D.S., Hwang C.S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook // Nanotechnology. 2011. V. 22. № 25. P. 254002.
  53. Park G.-S., Li X.-S., Kim D.-C., Jung R.-J., Lee M.-J., Seo S. Observation of electric-field induced Ni filament channels in polycrystalline NiOx film // Appl. Phys. Lett. 2007. V. 91. № 22. P. 222103.
  54. Dittmann R., Muenstermann R., Krug I., Park D., Menke T. Scaling Potential of Local Redox Processes in Memristive SrTiO3 Thin-Film Devices // Proc. IEEE. 2012. V. 100. № 6. P. 1979–1990.
  55. Yan Z.B., Liu J.-M. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures // Sci. Rep. 2013. V. 3. № 1. P. 2482.
  56. Orlov O.M., Gismatulin A.A., Gritsenko V.A., Mizginov D.S. Charge Transport Mechanism in a Formless Memristor Based on Silicon Nitride // Russ. Microelectron. 2020. V. 49. № 5. P. 372–377.
  57. Iskhakzay R.M.Kh., Kruchinin V.N., Aliev V.Sh., Gritsenko V.A., Dementieva E.V., Zamoryanskaya M.V. Charge Transport in Nonstoichiometric SiOx Obtained by Treatment of Thermal SiO2 in Hydrogen Plasma of Electronic-Cyclotron Resonance // Russ. Microelectron. 2022. V. 51. № 1. P. 24–35.
  58. Wang L.-G., Qian X., Cao Y.-Q. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications // Nanoscale Res. Lett. 2015. V. 10. № 1. P. 135.
  59. Avila A., Bhushan B. Electrical Measurement Techniques in Atomic Force Microscopy // Crit. Rev. Solid State Mater. Sci. 2010. V. 35. № 1. P. 38–51.
  60. Hui F., Lanza M. Scanning probe microscopy for advanced nanoelectronics // Nat. Electron. 2019. V. 2. № 6. P. 221–229.
  61. Hui F., Wen C., Chen S. Emerging Scanning Probe–Based Setups for Advanced Nanoelectronic Research // Adv. Funct. Mater. 2020. V. 30. № 18. P. 1902776.
  62. Electrical Atomic Force Microscopy for Nanoelectronics / ed. Celano U. Cham: Springer International Publishing, 2019.
  63. Hui F., Grustan-Gutierrez E., Long S. Graphene and Related Materials for Resistive Random Access Memories // Adv. Electron. Mater. 2017. V. 3. № 8. P. 1600195.
  64. Zuo Y. et al. Effect of the Pressure Exerted by Probe Station Tips in the Electrical Characteristics of Memristors // Adv. Electron. Mater. 2020. V. 6. № 3. P. 1901226.
  65. Jiang H., Belkin D., Savel’ev S.E. A novel true random number generator based on a stochastic diffusive memristor // Nat. Commun. 2017. V. 8. № 1. P. 882.
  66. Kim H., Mahmoodi M.R., Nili H. 4K-memristor analog-grade passive crossbar circuit // Nat. Commun. 2021. V. 12. № 1. P. 5198.
  67. Xia Q., Yang J.J., Wu W., Williams R.S. Self-Aligned Memristor Cross-Point Arrays Fabricated with One Nanoimprint Lithography Step // Nano Lett. 2010. V. 10. № 8. P. 2909–2914.
  68. Pi S., Lin P., Xia Q. Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography // J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2013. V. 31. № 6. P. 06FA02.
  69. Niu J., Zhang M., Li Y. Highly scalable resistive switching memory in metal nanowire crossbar arrays fabricated by electron beam lithography // J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2016. V. 34. № 2. P. 02G105.
  70. Meng J., Zhao B., Xu Q., Goodwill J.M., Bain J.A., Skowronski M. Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation // J. Appl. Phys. 2020. V. 127. № 23. P. 235107.
  71. Li Y., Ang K.-W. Hardware Implementation of Neuromorphic Computing Using Large-Scale Memristor Crossbar Arrays // Adv. Intell. Syst. 2021. V. 3. № 1. P. 2000137.
  72. Wei Z., Kanzawa Y., Arita K. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism // 2008 IEEE International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2008. P. 1–4.
  73. Choi B.J., Choi S., Kim K.M. Study on the resistive switching time of TiO2 thin films // Appl. Phys. Lett. 2006. V. 89. № 1. P. 012906.
  74. Kim S., Choi S., Lu W. Comprehensive Physical Model of Dynamic Resistive Switching in an Oxide Memristor // ACS Nano. 2014. V. 8. № 3. P. 2369–2376.
  75. Baeumer C., Valenta R., Schmitz C., Locatelli A., Rogers S.P., Sala A., Raab N. Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices // ACS Nano. 2017. V. 11. № 7. P. 6921–6929.
  76. Zhu Y.-L., Xue K.-H., Cheng X.-M., Qiao C., Yuan J.-H., Li L.-H., Miao X.-S. Uniform and robust TiN/HfO2/Pt memristor through interfacial Al-doping engineering // Appl. Surf. Sci. 2021. V. 550. P. 149274.
  77. Yoshida C., Tsunoda K., Noshiro H. High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application // Appl. Phys. Lett. 2007. V. 91. № 22. P. 223510.
  78. Choi B.J., Torrezan A.C., Norris K.J. Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch // Nano Lett. 2013. V. 13. № 7. P. 3213–3217.
  79. Fadeev A.V., Rudenko K.V. To the Issue of the Memristor’s HRS and LRS States Degradation and Data Retention Time // Russ. Microelectron. 2021. V. 50. № 5. P. 311–325.
  80. Kempen T., Waser R., Rana V. 50x Endurance Improvement in TaOx RRAM by Extrinsic Doping // 2021 IEEE International Memory Workshop (IMW). Dresden, Germany: IEEE, 2021. P. 1–4.
  81. Ryu H., Kim S. Effects of Oxygen Precursor on Resistive Switching Properties of CMOS Compatible HfO2-Based RRAM // Metals. 2021. V. 11. № 9. P. 1350.
  82. Lee H.Y., Chen P.S., Wu T.Y. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM // 2008 IEEE International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2008. P. 1–4.
  83. Koveshnikov S., Matthews K., Min K. Real-time study of switching kinetics in integrated 1T/HfOx 1R RRAM: Intrinsic tunability of set/reset voltage and trade-off with switching time // 2012 International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2012. P. 20.4.1–20.4.3.
  84. Yin B., Wang Y., Xie G., Guo B., Gong J.R. Memristors based on TiOx/HfOx or AlOx/HfOx Multilayers with Gradually Varied Thickness // Phys. Status Solidi RRL – Rapid Res. Lett. 2021. V. 15, № 6. P. 2000607.
  85. Syu Y.-E., Zhang R., Chang T.-C. Endurance Improvement Technology With Nitrogen Implanted in the Interface of WSiOx Resistance Switching Device // IEEE Electron Device Lett. 2013. V. 34. № 7. P. 864–866.
  86. Biswas S., Paul A.D., Das P., Tiwary P., Edwards H.J., Dhanak V.R., Mitrovic I.Z., Mahapatra R. Impact of AlO y Interfacial Layer on Resistive Switching Performance of Flexible HfOx/AlOy ReRAMs // IEEE Trans. Electron Devices. 2021. V. 68. № 8. P. 3787–3793.
  87. Persson K.-M., Ram M.S., Wernersson L.-E. Ultra-Scaled AlOx Diffusion Barriers for Multibit HfOx RRAM Operation // IEEE J. Electron Devices Soc. 2021. V. 9. P. 564–569.

© А.Г. Исаев, О.О. Пермякова, А.Е. Рогожин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>