КОМПЛЕМЕНТАРНЫЕ ИССЛЕДОВАНИЯ ТОНКИХ ПЛЕНОК АЛЮМИНИЯ: УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ И РЕАЛЬНАЯ СТРУКТУРА
- Авторы: Ломов А.А.1, Тарасов М.А.2, Щербачев К.Д.3, Татаринцев А.А.1, Чекушкин А.М.2
-
Учреждения:
- НИЦ Курчатовский институт
- Институт радиотехники и электроники им. В.А. Котельникова РАН
- Национальный исследовательский технологический университет МИСИС
- Выпуск: Том 54, № 5 (2025)
- Страницы: 357-370
- Раздел: ДИАГНОСТИКА
- URL: https://journals.rcsi.science/0544-1269/article/view/353906
- DOI: https://doi.org/10.7868/S3034548025050022
- ID: 353906
Цитировать
Аннотация
Об авторах
А. А. Ломов
НИЦ Курчатовский институт
Email: andlomov@ftian.ru
Москва, Россия
М. А. Тарасов
Институт радиотехники и электроники им. В.А. Котельникова РАНМосква, Россия
К. Д. Щербачев
Национальный исследовательский технологический университет МИСИСМосква, Россия
А. А. Татаринцев
НИЦ Курчатовский институтМосква, Россия
А. М. Чекушкин
Институт радиотехники и электроники им. В.А. Котельникова РАНМосква, Россия
Список литературы
- Wang H., Blaabjerg F . Reliability of capacitors for DC-link applications in power electronic converters – An overview // IEEE Transactions on industry Applications, 2014, vol. 50. No 5. pp. 3569–3578. https://doi.org/ 10.1109/TIA.2014.2308357
- Drozdov M.N., Drozdov Y.N., Chkhalo N.I. et al . Time-of-flight secondary ion mass spectrometry study on Be/Al-based multilayer interferential structures // Thin Solid Films, 2018, vol. 661. pp.65–70. https://doi.org/ 10.1016/j.tsf.2018.07.013
- Dubey A., Mishra R., Hsieh et al . Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth // Advanced Science 2020, Vol 7. No 24. pp. 2002274. https://doi.org/ 10.1002/advs.202002274
- Earnest C.T., Béjanin J.H., McCo nkey T.G. et al . Substrate surface engineering for high-quality silicon/aluminum superconducting resonators // Superconductor Science and Technology 2018. vol. 31. No 12. pp. 125013. https://doi.org/ 10.1088/1361-6668/aae548
- Clarke J., Braginski A.I . The SQUID Handbook – vol. 1 Fundamentals and Technology of SQUIDS and SQUID Systems (Wiley-VCH, Cambridge, 2002).
- Mantegazzini F., Ahrens F., Borghesi M. et al . High kinetic inductance NbTiN films for quantum limited travelling wave parametric amplifiers // Physica Scripta, 2023, vol. 98. No 12. pp. 125921. https://doi.org/ 10.1088/1402-4896/ad070d
- Khukhareva I. S . The superconducting properties of thin aluminum films // Soviet Physics JETP, 1963. vol. 16. No 4. pp. 828–832.
- Tarasov M., Gunbina A., Fominsky M. et al . Fabrication of NIS and SIS nanojunctions with aluminum electrodes and studies of magnetic field influence on IV curves // Electronics 2021, vol. 10. No 23. pp. 2894. https://doi.org/ 10.3390/electronics10232894
- Yeh C.C., Do T.H., Liao pp. C. et al . Doubling the superconducting transition temperature of ultraclean wafer-scale aluminum nanofilms // Physical Review Materials, 2023, vol. 7. No 11. pp. 114801. https://doi.org/ 10.1103/PhysRevMaterials.7.114801
- Yong Ju Lee . Sang-Won Kang Study on the characteristics of aluminum thin films prepared by atomic layer deposition // J. Vac. Sci. Technol., 2002, vol. A 20. No 6. pp. 183–188. https://doi.org/ 10.1116/1.1513636
- Buckel W., Kleiner R . Superconductivity: fundamentals and applications. John Wiley & Sons. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2008
- Wu W., Brongersma S.H., Van Hove M., Maex K . Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions // Applied physics letter , 2004, vol. 84. No 15. pp. 2838–2840. https://doi.org/ 10.1063/1.1703844
- Munoz R.C., Arenas C . Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces // Applied Physics Reviews, 2017. vol. 4. No 1. pp. 011102. https://doi.org/ 10.1063/1.4974032
- Thomson J. J . On the theory of electric conduction through thin metallic films // Proc. Camb. Philos. Soc . 1901. vol. 11. pp. 120.
- Kamerlingh-Onnes H. , Proc. K. Akad. 1906, vol. 9. pp. 459.
- Fuchs K . The (electrical) conductivity of thin metallic films according to the electron theory of metals // Proceedings of the Cambridge Philosophical Society 1938, vol. 34. pp. 100–108.
- Sondheimer E.H . The mean free path of electrons in metals // Advances in physics, 2001, vol. 50. No 6. pp. 499–537.
- Mayadas A.F., Shatzkes M., Janak J.F . Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces // Applied Physics Letters, 1969. vol. 14. No 11. pp. 345–347. https://doi.org/ 10.1063/1.1652680
- Mayadas A.F., Shatzkes M . Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces // Physical review B, 1970. vol. 1. No 4. pp. 1382–1389.
- Pyataikin I.I . Influence of the grain size effect on the coefficients of reflection, transmission, and absorption of microwaves by polycrystalline metal films // Journal of Radio Electronics 2020. vol. 10. pp. 1–29. https://doi.org/ 10.30898/1684-1719.2020.10.5
- Zhang W., Brongersma S. H., Richard O. et al . Influence of the electron mean free path on the resistivity of thin metal films // Microelectronic engineering 2004. vol. 76.No 1–4. pp. 146–152. https://doi.org/ 10.1016/j.mee.2004.07.041
- Bakonyi I . Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu // The European Physical Journal Plus 2021. vol. 136. No 4. pp. 410. https://d oi.org/10.1140/epjp/s13360-0 21-01303-4
- Chubov P.N., Eremenko V.V., Pilipenko Y. A . Dependence of the critical temperature and energy gap on the thickness of superconducting aluminum films // Sovol. Phys. JETP 1969. vol. 28. No 3. pp. 389–395.
- Pettit R.B., Silcox J . Film structure and enhanced superconductivity in evaporated aluminum films, Physical Review B1976. vol. 13. No 7. pp. 2865–2872. https://doi.org/ 10.1103/PhysRevB.13.2865
- Amirov I.I., Selyukov R.V, Naumov V.V., Gorlachev E.S . Influence of Deposition Conditions and Ion-Plasma Treatment of Thin Cobalt Films on Their Electrical Resistivity // Russ Microelectron 2021. vol. 50. No 1. pp. 1–7. https://d oi.org/10.1134/S1063739721010030
- Parratt L. G . Surface studies of solids by total reflection of X-rays // Physical review 1954. vol. 95. No 2. pp. 359. https://doi.org/ 10.1103/PHYSREvol.95.359
- Kiessig H . Interferenz von Röntgenstrahlen an d ü nnen Schichten // Annalen der Physik 1931. vol. 402. No 7. pp. 769–788.
- Holý V., Pietsch U., Baumbach T . High-resolution X-ray scattering from thin films and multilayers, Springer-Verlag, Berlin, Heidelberg, 1999. vol. 149
- Lomov A.A., Zakharov D.M., Tarasov M.A. et al . Influence of the homobuffer layer on the morphology, microstructure, and hardness of Al/Si (111) films // Technical Physics 2023. vol. 68. No 7. pp. 833–842. https://doi.org/ 10.61011/Tpp.2023.07.56624.83-23
- Wormington M., P anaccione C., Matne y K.M., Bowen D. K . Characterization of structures from X-ray scattering data using genetic algorithms // Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 1999. vol. 357. No 1761. pp. 2827–2848.
- Aswal D.K., Joshi N., Debnath A.K. et al . Thickness dependent morphology and resistivity of ultra-thin Al films grown on Si (111) by molecular beam epitaxy // Physica Status Solidi (a) 2006. vol. 203. No 6. pp. 1254–1258. https://doi.org/ 10.1002/pssa.200566102
- Седов E.А . Исследование критической температуры сверхпроводящего перехода тонких пленок алюм иния , Диссертация на соискание учёной степени кандидата технических наук. ВШЭ. Москва 2024 г. 124 стр.
- Desai P.D., James H.M., Ho C. Y . Electrical resistivity of aluminum and manganese // Journal of physical and chemical reference data 1984. vol. 13. No 4. pp. 1131–1172.
- Samsonov G. V . Handbook of the Physicochemical Properties of the Elements. Springer Science & Business Media 2012. A subsidiary of Plenum Publishing Corporation: Springer New-York-Washington 1968. https://doi.org/ 10.1007/978 - 1 - 4684 - 6066 - 7
- Nečas D., Klapetek P . Gwyddion: an open-source software for SPM data analysis // Open Physics 2012. vol. 10. No 1. pp. 181–188. https://doi.org/ 10.2478/s11534 - 011 - 0096 - 2
- Horcas I., Fernández R. , Gomez-Rodriguez J .M., Colchero J.W.S .X., Gómez-Herrero J.W.S.X.M., Baro A.M . WSXM: A software for scanning probe microscopy and a tool for nanotechnology // Review of scientific instruments 2007. vol. 78. No 1. pp. 013705. https://doi.org/ 10.1063/1.2432410.
- Shvartsman V.V., Kholkin A. L . Evolution of nanodomains in 0.9 PbMg 1/3 Nb 2/3 O 3–0.1 PbTiO 3 single crystals // Journal of applied physics 2007, vol. 101. pp. 064108. https://doi.org/ 10.1063/1.2713084
- Lomov A.A., Zakharov D.M., Tarasov M.A . et al . Al Islands on Si (111): Growth Temperature, Morphology, and Strain // Russian Microelectronics 2024. vol. 53. No 4. pp. 339–348. https://doi.org/ 10.1134/S1063739724600468
- Croce P., Névot L . Étude des couches minces et des surfaces par réflexion rasante, spéculaire ou diffuse, de rayons X. // Revue de physique appliquée 1976. vol. 11. No 1. pp. 113–125. https://doi.org/ 10.1051/rphysap:01976001101011300
- Artioukov I.A., Asadchikov V.E ., Kozhevnikov I. V . Effects of a near-surface transition layer on X-ray reflection and scattering // Journal of X-Ray Science and Technology 1996. vol. 6. No 3. pp. 223–243. https://doi.org/ 10.3233/XST-1996 - 6301
- Afanas’ev A.M., Chuev M.A., Imamov R.M. et al . Study of multilayer GaAs-In x Ga 1-x As layers-based structure by double-crystal x-ray diffractometry // Kristallografiya 1997. vol. 42. No 3. pp. 514–523.
- Press W.H. et al . Numerical Recipes in C. N.Y.: Cambridge University Press.1996. 994 pp.
- Dobierzewska-Mozrzym as E., Warkusz F . Size effects in epitaxial aluminium films // Thin Solid Films 1977. vol. 43. No 3. pp. 267–273. https://doi.org/ 10.1016/0040 - 6090(77)90288 - 7
- Ashcroft N.W., Mermin N. D . Solid State physics, WB Saunders, Philadephia, 1976.
- Birkholz M ., Thin film analysis by X-ray scattering, John Wiley & Sons. 2006. https://doi.org/10.1002/3527607595
Дополнительные файлы


