Research of Memristor Effect in Crossbar Architecture for Neuromorphic Artificial Intelligence Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents the results of experimental studies of structures formed on the basis of the crossbar architecture of memristor structures made of various materials. TiO2 was used as a working memristor layer. The following materials were used for the contact pads: Al, Ni, Cr, Mo, Ta, Ag. In the course of experimental studies, the optimal combination of materials for the formation of crossbar memristor structures was revealed, which in the future can be used in devices of neuromorphic artificial intelligence systems.

About the authors

V. V. Polyakova

Southern Federal University

Author for correspondence.
Email: vpolyakova@sfedu.ru
Russian Federation, Taganrog

A. V. Saenko

Southern Federal University

Email: vpolyakova@sfedu.ru
Russian Federation, Taganrog

I. N. Kots

Southern Federal University

Email: vpolyakova@sfedu.ru
Russian Federation, Taganrog

A. V. Kovalev

Southern Federal University

Email: vpolyakova@sfedu.ru
Russian Federation, Taganrog

References

  1. Proydakov E.M. Современное состояние исследований в области искусственного интеллекта // Digital economy. 2018. T. 3. No. 3. P. 50.
  2. Gafarov F.M. Artificial neural networks and applications. Kazan: Kazan, 2018.
  3. Zidan M.A., Strachan J.P., Lu W.D. The future of electronics based on memristive systems // Nat. Electron. 2018. V. 1. P. 22.
  4. Kozhukhov A.S., Scheglov D.V., Fedina L.I., Latyshev A.V. The initial stages of atomic force microscope based local anodic oxidation of silicon AIP Advances 8, 025113 (2018). https://doi.org/10.1063/1.5007914
  5. Colangelo F., Piazza V., Coletti С., Roddaro S., Beltram F., Pingue P. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate. 2 May 2018. https://doi.org/10.1088/1361-6528/aa59c7.
  6. Polyakova V.V., Saenko A.V. Local Anodic Oxidation for Crossbar-Array Architecture Technical Physics. 2022. V. 92. No. 8. Р. 1159–1165.
  7. Rozanov R.Yu., Kondrashov V.A., Nevolin V.K., Chaplygin Yu. A. Development and research of memristors based on metal films of nanoscale thickness // Nanoengineering. 2014. No. 2. Р. 22–28.
  8. Choi B.J., Torrezan A.C., Norris K.J., Miao F. Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch // Nano Lett. 2013. № 13 (7). Р. 3213–3217.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Technological route of crossbar architecture formation

Download (317KB)
3. Fig. 2. Desktop vacuum magnetron sputtering unit VSE-PVD-DESK-PRO

Download (288KB)
4. Fig. 3. Solver P47 PRO probe microscope

Download (236KB)
5. Fig. 4. Schematic of measuring the VAC of a mockup of crossbar memristor structures

Download (96KB)
6. Fig. 5. Voltampere characteristics of Si/SiO2/Ti/TiO2/Al structure

Download (108KB)
7. Fig. 6. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ni structure

Download (95KB)
8. Fig. 7. Voltampere characteristics of Si/SiO2/Ti/TiO2/Cr structure

Download (114KB)
9. Fig. 8. Voltampere characteristics of Si/SiO2/Ti/TiO2/Mo structure

Download (132KB)
10. Fig. 9. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ta structure

Download (155KB)
11. Fig. 10. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ag structure

Download (123KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies