Modeling of Physical-Chemical and Electronic Properties of Lithium-Containing 4H—SiC and Binary Phases of the Si—C–Li System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the equilibrium model of the solid surface–adatom system, including a three-dimensional interfacial surface, changes in surface properties are considered, taking into account the chemical potential due to the action of surface tension. The relationship between chemical potential and electrochemical potential of the ith component in an electrochemical cell is analyzed. Using the density functional theory (DFT), the adsorption, electronic, and thermodynamic properties of 2 × 2 × 1 and 3 × 3 × 1 supercells of crystalline compounds AmBn, (, where n and m are stoichiometric coefficients) of the boundary binary systems of the ternary phase diagram of Si–C–Li are studied. The stability of phases AmBn and property calculations are carried out with the exchange-correlation functional within the framework of the generalized gradient approximation (GGA PBE). The parameters of the crystal structures of the compounds AmBn, the adsorption energy of the lithium adatom  on a 4H–SiC substrate, the electronic structure, and the thermodynamic properties of supercells are calculated. The thermodynamically stable configurations of the 4H–SiC–Liads supercells having different locations Liads are determined. The DFT GGA PBE calculations of the enthalpy of formation of compounds AmBn are carried out in the ternary Si–C–Li system. Taking into account the changes in the Gibbs free energy in the solid-phase exchange reactions between binary compounds, equilibrium sections (connodes) in the concentration triangle of the Si–C–Li phase diagram are established. An isothermal section of the Si–C–Li phase diagram at 298 K is constructed. The patterns of diffusion processes that are related to the movement of particles on the surface layer of the 6H–SiC sample are analyzed. The activation energy of lithium diffusion in 6H–SiC is calculated from the Arrhenius type relation in two temperature ranges (769–973 K) and (1873–2673 K).

About the authors

M. M. Asadov

Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan; Scientific Research Institute of Geotechnological Problems of Oil, Gas and Chemistry

Author for correspondence.
Email: mirasadov@gmail.com
Azerbaijan, Baku; Baku

S. S. Huseynova

Institute of Physics, Ministry of Science and Education of Azerbaijan

Email: mirasadov@gmail.com
Azerbaijan, Baku

S. N. Mustafaeva

Institute of Physics, Ministry of Science and Education of Azerbaijan

Email: mirasadov@gmail.com
Azerbaijan, Baku

S. O. Mammadova

Institute of Physics, Ministry of Science and Education of Azerbaijan

Email: mirasadov@gmail.com
Azerbaijan, Baku

V. F. Lukichev

Valiev Physics and Technology Institute, Russian Academy of Sciences

Email: lukichev@ftian.ru
Russian Federation, Moscow

References

  1. Kimoto T., Cooper J.A. Fundamentals of Silicon Carbide Technology. Growth, Characterization, Devices, and Applications. John Wiley & Sons Singapore Pte. Ltd, 2014. 538 p. ISBN978-1-118-31352-7.
  2. Fan Y., Deng C., Gao Y., Ding Y., Wu Y., Mo S., Yao Y., Liang B., Lu S., Qi W., Tao T. Highly reversible lithium storage in Li2C2 nanosheets // Carbon. 2021. V. 177. P. 357–365. https://doi.org/10.1016/j.carbon.2021.02.095
  3. Guo J., Dong D., Wang J., Liu D., Yu X., Zheng Y., Wen Z., Lei W., Deng Y., Wang J., Hong G., Shao H. Silicon‐Based Lithium Ion Battery Systems: State‐of‐the‐Art from Half and Full Cell Viewpoint // Advanced Functional Materials. 2021. 2102546. P. 1–65. https://doi.org/10.1002/adfm.202102546
  4. Huggins R.A. Advanced Batteries — Materials Science Aspects. 1st ed., Science+Business Media, LLC. New York, 2009. 474 p.
  5. Drüe M., Kozlov A., Seyring M., Song X., Schmid-Fetzer R., Rettenmayr M. Phase formation in the ternary system Li—Si—C // Journal of Alloys and Compounds. 2015. S0925838815309312. P. 1–20. https://doi.org/10.1016/j.jallcom.2015.08.235
  6. Liang S.-M., Drüe M., Kozlov A., Rettenmayr M., Schmid-Fetzer R. Key experiments and challenging thermodynamic modeling of the Li—Si—C system // Journal of Alloys and Compounds. 2017. V. 698. P. 743–753. https://doi.org/10.1016/j.jallcom.2016.12.271
  7. Drüe M., Liang S.-M., Seyring M., Kozlov A., Song X., Rettenmayr M., Schmid-Fetzer R. Phase formation in alloy-type anode materials in the quaternary system Li—Sn—Si—C // International Journal of Materials Research. 2017. V. 108. No. 11. 146.111559. P. 933–941. https://doi.org/10.3139/146.111559
  8. He X., Tang A., Li Y., Zhang Y., Chen W., Huang S. Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries // Applied Surface Science. 2021. V. 563. 150269. P. 1–10. https://doi.org/10.1016/j.apsusc.2021.150269
  9. Vasilevskiy K., Wright N.G. Historical Introduction to Silicon Carbide Discovery, Properties and Technology. Ch. 1. In book: Advancing Silicon Carbide Electronics Technology II. Materials Research Foundations. 2020. V. 69. P. 1–62. https://doi.org/10.21741/9781644900673-1
  10. Kong L., Chai C., Song Y., Zhang W., Zhang Z., Yang Y. Structural, elastic, electronic, and anisotropic properties of Pbca-SiC and Pbcn-SiC // AIP Advances. 2021. V. 11. 045107. P. 1–11. https://doi.org/10.1063/5.0044672
  11. Petersen R.J., Thomas S.A., Anderson K.J., Pringle T.A., May S., Hobbie E.K. Silicon-Carbide Nanocrystals from Nonthermal Plasma: Surface Chemistry and Quantum Confinement // The Journal of Physical Chemistry C. 2022. P. 1–10. https://doi.org/10.1021/acs.jpcc.2c03948
  12. Ruschewitz U., Pöttgen R. Structural Phase Transition in Li2C2 // Zeitschrift für anorganische und allgemeine Chemie. 1999. V. 625. No. 10. P. 1599–1603. https://doi.org/10.1002/(sici)1521-3749(199910)625:10<1599:: aid-zaac1599>3.0.co;2-j
  13. Ruprecht B., Billetter H., Ruschewitz U., Wilkening M. Ultra-slow Li ion dynamics in Li2C2 — on the similarities of results from 7Li spin-alignment echo NMR and impedance spectroscopy // Journal of Physics: Condensed Matter. 2010. V. 22. 245901. P. 1–10. https://doi.org/10.1088/0953-8984/22/24/245901
  14. Johanna N., Sumit K., Peter L., Daryn B., Ulrich H. Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure // The Journal of Chemical Physics. 2012. V. 137. No. 22. 224507. P. 1–9. https://doi.org/10.1063/1.4770268
  15. Tian N., Gao Y., Li Y., Wang Z., Song X., Chen L. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries // Angewandte Chemie International Edition. 2016. V. 5. No. 2. P. 644–648. https://doi.org/10.1002/anie.201509083
  16. Ali S. Opto-Electronic Properties of Li2C2 Polymorphs // Madridge Journal Nanotechnol Nanosci. 2017. V. 2. No. 1. P. 73–75. https://doi.org/10.18689/mjnn-1000113
  17. Gu M., He Y., Zheng J., Wang C. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges // Nano Energy. 2015. S221128551500350X. P. 1–18. https://doi.org/10.1016/j.nanoen.2015.08.025
  18. Huggins R.A. Advanced Batteries. Springer Science+Business Media, LLC, 2009. 474 p.
  19. Obrovac M.N., Christensen L. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction // Electrochemical and Solid-State Letters. 2004. V. 7. No. 5. P. A93—A96. https://doi.org/10.1149/1.1652421
  20. Wu H., Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries // Nano Today. 2012. V. 7. No. 5. P. 414–429. https://doi.org/10.1016/j.nantod.2012.08.004
  21. Morachevskii A.G., Demidov A.I. Lithium-silicon alloys: Phase diagram, electrochemical studies, thermodynamic properties, application in chemical power cells // Russian Journal of Applied Chemistry. 2015. V. 88. No. 4. P. 547–566. https://doi.org/10.1134/S1070427215040011
  22. Wang P., Kozlov A., Thomas D., Mertens F., Schmid-Fetzer R. Thermodynamic analysis of the Li—Si phase equilibria from 0 K to liquidus temperatures // Intermetallics. 2013. V. 42. P. 137–145. https://doi.org/10.1016/j.intermet.2013.06.003
  23. Kim H., Chou C.-Y., Ekerdt J.G., Hwang G.S. Structure and Properties of Li–Si Alloys: A First-Principles Study // The Journal of Physical Chemistry C. 2011. V. 115. P. 2514–2521. https://doi.org/10.1021/jp1083899
  24. Chiang H.-H., Lu J.-M., Kuo C.-L. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys // Journal of Chemical Physics. 2016. V. 144. 034502. P. 1–14. https://doi.org/10.1063/1.4939716
  25. Chiang H.-H., Lu J.-M., Kuo C.-L. A comparative first-principles study of the structural and electronic properties of the liquid Li–Si and Li–Ge alloys // Journal of Chemical Physics. 2017. V. 146. No. 6. 064502. P. 1–11. https://doi.org/10.1063/1.4975764
  26. Dębski A., Zakulski W., Major Ł., Góral A., Gąsior W. Enthalpy of formation of the Li22Si5 intermetallic compound // Thermochimica Acta. 2013. V. 551. P. 53–56. https://doi.org/10.1016/j.tca.2012.10.015
  27. Thomas D., Abdel-Hafiez M., Gruber T., Hüttl R., Seidel J., Wolter A.U.B., Büchner B., Kortus J., Mertens F. The heat capacity and entropy of lithium silicides over the temperature range from (2 to 873) K // Journal of Chemical Thermodynamics. 2013. V. 64. P. 205–225. https://doi.org/10.1016/j.jct.2013.05.018
  28. Dębski A., Gąsior W., Góral A. Enthalpy of formation of intermetallic compounds from the Li–Si system // Intermetallics. 2012. V. 26. P. 157–161. https://doi.org/10.1016/j.intermet.2012.04.001
  29. Thomas D., Zeilinger M., Gruner D., Hüttl R., Seidel J., Wolter A.U.B., Fässler T.F., Mertens F. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K // Journal of Chemical Thermodynamics. 2015. V. 85. P. 178–190. https://doi.org/10.1016/j.jct.2015.01.004
  30. Taubert F., Schwalbe S., Seidel J., Hüttl R., Gruber T., Janot R., Bobnar M., Gumeniuk R., Mertens F., Kortus J. Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations // International Journal of Materials Research. 2017. V. 108. 146.111550. P. 943–958. https://doi.org/10.3139/146.111550
  31. Thomas D., Bette N., Taubert F., Hüttl R., Seidel J., Mertens F. Experimental determination of the enthalpies of formation of the lithium silicides Li7Si3 and Li12Si7 based on hydrogen sorption measurements // Journal of Alloys and Compounds. 2017. V. 704. 0925–8388. P. 398–405. https://doi.org/10.1016/j.jallcom.2017.02.010
  32. Taubert F., Thomas D., Hüttl R., Seidel J., Mertens F. Experimental determination of enthalpies of formation of Li17Si4, Li16.42Si4 and Li13Si4 // Journal of Alloys and Compounds. 2022. V. 897. 163147. P. 898–805. https://doi.org/10.1016/j.jallcom.2021.163147
  33. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. DFT electronic structure simulation and adsorption of germanium in ordered graphene with a vacancy // Russian Microelectronics. 2022. V. 51. No. 2. P. 83–96. https://doi.org/10.1134/S1063739722010024
  34. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. Ab initio calculations of electronic properties and charge transfer in Zn1-xCuxO with wurtzite structure // Physics of the Solid State. 2022. V. 64. No. 5. P. 528–539. https://doi.org/10.21883/0000000000
  35. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Physical Review Letters. 1996. V. 77. No. 18. P. 3865–3868. https://doi.org/10.1103/physrevlett.77.3865
  36. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations // Physical Review. B. 1976. V. 13. No. 12. P. 5188–5192. https://doi.org/10.1103/physrevb.13.5188
  37. Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling of Gold Adsorption by the Surface of Defect Graphene // Russian Microelectronics. 2022. V. 51. No. 6. P. 413–425. https://doi.org/10.1134/S1063739722700159
  38. Asadov M.M., Mammadova S.O., Huseynova S.S., Mustafaeva S.N., Lukichev V.F. Simulation of the Adsorption and Diffusion of Lithium Atoms on Defective Graphene for a Li-Ion Battery // Russian Microelectronics. 2023. V. 52. No. 3. P. 167–185. https://doi.org/10.1134/S1063739723700336
  39. Asadov S.M. Thermodynamics and Crystallization Kinetics of Solid Solutions GaSxSe1–x (0 ³ x £1) // Russian Journal of Physical Chemistry A. 2022. V. 96. No. 2. P. 259–266. https://doi.org/10.1134/S0036024422020029.
  40. Lupis C.H.P. Chemical Thermodynamics of Materials. New York; Oxford: North-Holland, 1983. 581 p. ISBN: 0444007792; Prentice Hall, 1993.
  41. Madelung O. Semiconductors: Data Handbook. 3rd edition. Springer-Verlag Berlin Heidelberg New York, 2004. 690 p. ISBN978-3-642-62332-5.
  42. He J., Song X., Xu W., Zhou Y., Seyring M., Rettenmayr M. Preparation and phase stability of nanocrystalline Li2C2 alloy // Materials Letters. 2013. V. 94. P. 176–178. http://dx.doi.org/10.1016/j.matlet.2012.12.045
  43. Davydov S.Yu., Posrednik O.V. Adsorption of Group-I and -VII Atoms on Silicon-Carbide Polytypes // Semiconductors. 2020. V. 54. No. 11. P. 1197–1202.
  44. Zhang Y.J., Yin Z.-P., Su Y., Wang D.-J. Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study // Chinese Physics B. 2018. V. 27. No. 4. 047103.
  45. Zhao G.L., Bagayoko D. Electronic structure and charge transfer in 3C- and 4H-SiC // New Journal of Physics. 2000. V. 2. P. 1–16. http://www.njp.org/
  46. Kubaschewski O., Alcock C.B. Metallurgical Thermochemistry. Fifth Edition. Oxford; New York: Pergamon Press, 1979. 449 p.
  47. Braga M.H., Dębski A., Gąsior W. Li-Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment // Journal of Alloys and Compounds. 2014. V. 616. P. 581–593. http://dx.doi.org/10.1016/j.jallcom.2014.06.212
  48. Morris A.J., Grey C.P., Pickard C.J. Thermodynamically stable lithium silicides and germanides from density-functional theory calculations // arXiv: 1402.6233v1 [cond-mat.mtr-sci] 25 Feb 2014. P. 1–10.
  49. Asadov M.M., Kuli-zade E.S. Phase equilibria, thermodynamic analysis and electrical properties of the Li2O — Y2O3—B2O3 system // Journal of Alloys and Compounds. 2020. V. 842. 155632. https://doi.org/10.1016/j.jallcom.2020.155632
  50. Jaeger R.C. Interoduction to microelectronic fabrication. Volume 5 (Modular Series on Solid State Devices) 2nd Edition. G.W. Neudeck, R.F. Pierret, Editors. 2002. Chapter 4. Diffusion. P. 67–109. Prentice Hall. Inc. New Jersey 07458.
  51. Gosele U.M. Fast Diffusion in Semiconductors // Annual Review of Materials Science. 1988. V. 18. No. 1. P. 257–282. https://doi.org/10.1146/annurev.ms.18.080188.
  52. Ghoshtagore R.N., Coble R.L. Self-Diffusion in Silicon Carbide // Physical review. 1966. V. 143. No. 2. P. 623–626. https://doi.org/10.1103/physrev.143.623
  53. Linnarsson M.K., Janson M.S., Karlsson S., Schoner A., Nordell N., Svensson B.G. Diffusion of light elements in 4H- and 6H-SiC // Materials Science and Engineering. 1999. B61–62. Р. 275–280. https://doi.org/10.1016/s0921-5107(98)00517-0
  54. Mokhov E.N. Doping of SiC Crystals during Sublimation Growth and Diffusion. In Book: Crystal Growth. IntechOpen, 2018. P. 1–25. http://dx.doi.org/10.5772/intechopen.82346
  55. Chabi S., Kadel K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor // Nanomaterials. 2020. V. 10. No. 11. P. 2226–2246. https://doi.org/10.3390/nano10112226
  56. Haase V., Kirschstein G., List H., Ruprecht S., Sangster R., Schröder F. The Si-C Phase Diagram. In: Katscher H., Sangster R., Schröder F. (eds) Si Silicon. Gmelin Handbook of Inorganic Chemistry / Gmelin Handbuch der Anorganischen Chemie. 1985. V. Si / B / 1–5 / 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06994-3_1
  57. Gao G.Y., Ashcroft N.W., Hoffmann R. The Unusual and the Expected in the Si/C Phase Diagram // Journal of the American Chemical Society. 2013. V. 135. No. 31. P. 11651–11656. https://doi.org/10.1021/ja405359a
  58. Linstrom P.J., Mallard W.G. (Editors). 2005. “NIST Chemistry WebBook”, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 2003 // http://webbook.nist.gov

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the Brillouin zone (ZB) of the hexagonal polytype 4H-SiC (a) and ZB of the unit cell 4H-SiC (b)

Download (315KB)
3. Fig. 2. Spherical core-shell model of solid nanoparticles

Download (238KB)
4. Fig. 3. Optimized atomic structures of 2 × 2 × 1 4H-SiC supercells (a) and 4H-SiC-Liads (b)

Download (233KB)
5. Fig. 4. DFT GGA PBE calculated electronic zone structure (a), total DOS (b) and partial density of states PDOS (c) of 3 × 3 × 1 supercells based on 4H-SiC and SW-SiC-Liads (d). The PDOS shows the individual contributions of each atomic orbital without considering the spin-orbit coupling effect. In Fig. c, d: 1 - full DOS; 2 - PDOS for Si; 3 - PDOS for C; 4 - PDOS for Li. The Fermi level is set at 0 eV

Download (976KB)
6. Fig. 5. The total (DOS) and partial electron density of states (PDOS) of α-Li2C2 with orthorhombic syngony. In Fig. a: 1, DOS; 2, PDOS C2s-2p-state; 3, PDOS Li1s-state. In Fig. b: DOS [15]. The Fermi level is set at 0 eV

Download (212KB)
7. Fig. 6. Electron density of the DOS states of the LiSi compound: 1 - Si3s-state; 2 - Si3p-state. The Fermi level is set at 0 eV

Download (159KB)
8. Fig. 7. Temperature dependence of heat capacity Cp of compound Li2C2 [6]

Download (107KB)
9. Fig. 8. Our approximated experimental dependences [6] of compounds: 1 - α-SiC; 2 - α-Li2C2

Download (118KB)
10. Fig. 9. Isothermal section of the Si-C-Li system at 298 K, plotted with DFT GGA PBE calculations taken into account

Download (210KB)
11. Fig. 10. Depth distribution of diffusing impurity in a solid layer: a - at a constant source; b - at a limited source

Download (351KB)
12. Fig. 11. Schemes of foreign atom location along the vacancy during diffusion

Download (98KB)
13. Fig. 12. Schemes of foreign atom by inter-nodal arrangement during diffusion

Download (105KB)
14. Fig. 13. Dependence of the effective lithium diffusion coefficient on the reverse annealing temperature in the 6H-SiC-Lidif p-type sample. The slope values of the above dependence calculated by us correspond to activation energies of 2.1 eV in the interval (769-973 K) [53] and 1.57 eV in the interval (1873-2673 K) [54], respectively

Download (163KB)
15. Fig. 14. Arrangement of atoms in polytypes 3C-, 4H-, Eg according to schemes AB, ABCB and ABCACB

Download (367KB)
16. Fig. 15. T - x phase diagram of the Si-C system [56]

Download (132KB)
17. Fig. 16. DFT calculated concentration dependence of enthalpy of formation of binary phases of Si-C system: 1 - our DFT calculation; 2 - [58]; 3 - [57]

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies