Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 75, Nº 2 (2020)

Solenoidal attractors of diffeomorphisms of annular sets

Glyzin S., Kolesov A., Rozov N.

Resumo

An arbitrary diffeomorphism $\Pi$ of an annular set of the form $K=B\times \mathbb{T}$ is considered, where $B$ is a ball in a Banach space and $\mathbb{T}$ is a (finite- or infinite-dimensional) torus. A system of effective sufficient conditions is proposed which ensure that $P$ has a global attractor $A=\bigcap_{n\geqslant 0}\Pi^n(K)$ that can be represented as a generalized solenoid, that is, the inverse limit $\mathbb{T}\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots$, where $G$ is an expanding linear endomorphism of the torus $\mathbb{T}$. Furthermore, the restriction $\Pi|_{A}$ is topologically conjugate to a shift map of the solenoid.Bibliography: 25 titles.
Uspekhi Matematicheskikh Nauk. 2020;75(2):3-60
pages 3-60 views

Uniform attractors for measure-driven quintic wave equations

Savostianov A., Zelik S.

Resumo

This is a detailed study of damped quintic wave equations with non-regular and non-autonomous external forces which are measures in time. In the 3D case with periodic boundary conditions, uniform energy-to-Strichartz estimates are established for the solutions, the existence of uniform attractors in a weak or strong topology in the energy phase space is proved, and their additional regularity is studied along with the possibility of representing them as the union of all complete bounded trajectories.Bibliography: 45 titles.
Uspekhi Matematicheskikh Nauk. 2020;75(2):61-132
pages 61-132 views

In search of infinite-dimensional Kähler geometry

Sergeev A.

Resumo

This paper is devoted to a survey of recent results in the Kähler geometry of infinite-dimensional Kähler manifolds. Three particular classes of such manifolds are investigated: the loop spaces of compact Lie groups, Hilbert–Schmidt Grassmannians, and the universal Teichmüller space. These investigations have been prompted both by requirements in Kähler geometry itself and by connections with string theory, which are considered in the last section.Bibliography: 43 titles.
Uspekhi Matematicheskikh Nauk. 2020;75(2):133-184
pages 133-184 views

Alexandre Mikhailovich Vinogradov (obituary)

Astashov A., Astashova I., Bocharov A., Buchstaber V., Vassiliev V., Verbovetsky A., Vershik A., Veselov A., Vinogradov M., Vitagliano L., Vitolo R., Voronov T., Kac V., Kosmann-Schwarzbach Y., Krasil'shchik I., Krichever I., Krishchenko A., Lando S., Lychagin V., Marvan M., Maslov V., Mishchenko A., Novikov S., Rubtsov V., Samokhin A., Sosinskii A., Stasheff J., Fuchs D., Helemskii A., Khor'kova N., Chetverikov V., Schwarz A.
Uspekhi Matematicheskikh Nauk. 2020;75(2):185-190
pages 185-190 views

On the Sierpinski–Knopp curve

Shchepin E.
Uspekhi Matematicheskikh Nauk. 2020;75(2):191-192
pages 191-192 views

Asymptotics of the boundaries in one non-linear optimal stopping problem

Muravlev A.
Uspekhi Matematicheskikh Nauk. 2020;75(2):193-194
pages 193-194 views

On the solution of the 33rd Palis–Pugh problem for gradient-like diffeomorphisms of a 2-sphere

Nozdrinova E., Pochinka O.
Uspekhi Matematicheskikh Nauk. 2020;75(2):195-196
pages 195-196 views

Vladimir Petrovich Platonov (on his 80th birthday)

Adian S., Buchstaber V., Zel'manov E., Kislyakov S., Kozlov V., Matiyasevich Y., Novikov S., Orlov D., Parshin A., Popov V., Treschev D.
Uspekhi Matematicheskikh Nauk. 2020;75(2):197-200
pages 197-200 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).