Uspekhi Matematicheskikh Nauk

Peer-review bimonthly mathematical journal

Editor-in-chief

  • Valery V. Kozlov, Member of the Russian Academy of Sciences, Doctor of physico-mathematical sciences, Professor

Publisher

  • Steklov Mathematical Institute of RAS

Founders

  • Russian Academy of Sciences
  • Steklov Mathematical Institute of RAS

About

Frequency

The journal is published bimonthly.

Indexation

  • Scopus
  • Web of Science
  • Russian Science Citation Index
  • Google Scholar
  • Ulrich's Periodical Directory
  • CrossRef

Scope

The journal publishes survey articles on the most topical research in mathematics, Brief Communications, and biographical materials.

Main webpage: https://www.mathnet.ru/rm 

Access to the English version journal dating from the first translation volume is available at https://www.mathnet.ru/eng/umn.

Current Issue

Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 79, No 6 (2024)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access
Preface by the Editor-in-Chief
Kozlov V.V.
Uspekhi Matematicheskikh Nauk. 2024;79(6):3-4
pages 3-4 views
Accelerated Stochastic ExtraGradient: Mixing Hessian and gradient similarity to reduce communication in distributed and federated learning
Bylinkin D.A., Degtyarev K.D., Beznosikov A.N.
Abstract

Modern realities and trends in learning require more and more generalization ability of models, which leads to an increase in both models and training sample size. It is already difficult to solve such tasks in a single device mode. This is the reason why distributed and federated learning approaches are becoming more popular every day. Distributed computing involves communication between devices, which requires solving two key problems: efficiency and privacy. One of the most well-known approaches to combat communication costs is to exploit the similarity of local data. Both Hessian similarity and homogeneous gradients have been studied in the literature, but separately. In this paper we combine both of these assumptions in analyzing a new method that incorporates the ideas of using data similarity and clients sampling. Moreover, to address privacy concerns, we apply the technique of additional noise and analyze its impact on the convergence of the proposed method. The theory is confirmed by training on real datasets.Bibliography: 45 titles.

Uspekhi Matematicheskikh Nauk. 2024;79(6):5-38
pages 5-38 views
On greedy approximation in complex Banach spaces
Gasnikov A.V., Temlyakov V.N.
Abstract

The general theory of greedy approximation with respect to arbitrary dictionaries is well developed in the case of real Banach spaces. Recently some results proved for the Weak Chebyshev Greedy Algorithm (WCGA) in the case of real Banach spaces were extended to the case of complex Banach spaces. In this paper we extend some of the results known in the real case for greedy algorithms other than the WCGA to the case of complex Banach spaces.Bibliography: 25 titles.

Uspekhi Matematicheskikh Nauk. 2024;79(6):39-56
pages 39-56 views
Extrapolation of the Bayesian classifier with an unknown support of the two-class mixture distribution
Lukyanov K.S., Yaskov P.A., Perminov A.I., Kovalenko A.P., Turdakov D.Y.
Abstract
This work introduces a method aimed at enhancing the reliability of the Bayesian classifier. The method involves augmenting the training dataset, which consists of a mixture of distributions from two original classes, with artificially generated observations from a third, ‘background’ class, uniformly distributed over a compact set that contains the unknown support of the original mixture.This modification allows the value of the discriminant function outside the support of the training data distribution to approach a prescribed level (in this case, zero). Adding a decision option for ‘Refusal to Classify’, triggered when the discriminant function takes sufficiently small values, results in a localized increase in classifier reliability. Specifically, this approach addresses several issues: it enables the rejection of data that differs significantly from the training data; facilitates the detection of anomalies in input data; and avoids decision-making in ‘boundary’ regions when separating classes.The paper provides a theoretical justification for the optimality of the proposed classifier. The practical utility of the method is demonstrated through classification tasks involving images and time series.Additionally, a methodology for identifying trusted regions is proposed. This methodology can be used to detect anomalous data, cases of parameter shifts in class distributions, and areas of overlap between the distributions of the original classes. Based on these trusted regions, quantitative metrics for classifier reliability and efficiency are introduced.Bibliography: 23 titles.
Uspekhi Matematicheskikh Nauk. 2024;79(6):57-82
pages 57-82 views
Local SGD for near-quadratic problems: Improving convergence under unconstrained noise conditions
Sadchikov A.E., Chezhegov S.A., Beznosikov A.N., Gasnikov A.V.
Abstract

Distributed optimization plays an important role in modern large-scale machine learning and data processing systems by optimizing the utilization of computational resources. One of the classical and popular approaches is Local Stochastic Gradient Descent (Local SGD), characterized by multiple local updates before averaging, which is particularly useful in distributed environments to reduce communication bottlenecks and improve scalability. A typical feature of this method is the dependence on the frequency of communications. But in the case of a quadratic target function with homogeneous data distribution over all devices, the influence of the frequency of communications vanishes. As a natural consequence, subsequent studies include the assumption of a Lipschitz Hessian, as this indicates the similarity of the optimized function to a quadratic one to a certain extent. However, in order to extend the completeness of Local SGD theory and unlock its potential, in this paper we abandon the Lipschitz Hessian assumption by introducing a new concept of approximate quadraticity. This assumption gives a new perspective on problems that have near quadratic properties. In addition, existing theoretical analyses of Local SGD often assume a bounded variance. We, in turn, consider the unbounded noise condition, which allows us to broaden the class of problems under study.Bibliography: 36 titles.

Uspekhi Matematicheskikh Nauk. 2024;79(6):83-116
pages 83-116 views
Local methods with adaptivity via scaling
Chezhegov S., Skorik S.N., Khachaturov N., Shalagin D., Avetisyan A.A., Takáč M., Kholodov Y.A., Beznosikov A.N.
Abstract

The rapid development of machine learning and deep learning has introduced increasingly complex optimization challenges that must be addressed. Indeed, training modern, advanced models has become difficult to implement without leveraging multiple computing nodes in a distributed environment. Distributed optimization is also fundamental to emerging fields such as federated learning. Specifically, there is a need to organize the training process so as to minimize the time lost due to communication. A widely used and extensively researched technique to mitigate the communication bottleneck involves performing local training before communication. This approach is the focus of our paper. Concurrently, adaptive methods that incorporate scaling, notably led by Adam, gained significant popularity in recent years. Therefore, this paper aims to merge the local training technique with the adaptive approach to develop efficient distributed learning methods. We consider the classical Local SGD method and enhance it with a scaling feature. A crucial aspect is that scaling is described generically, allowing us to analyze various approaches, including Adam, RMSProp, and OASIS, in a unified manner. In addition to the theoretical analysis, we validate the performance of our methods in practice by training a neural network.Bibliography: 49 titles.

Uspekhi Matematicheskikh Nauk. 2024;79(6):117-158
pages 117-158 views

SHORT MESSAGES

Kolmogorov and Rokhlin spectral problems in the class of mixing automorphisms
Ryzhikov V.V.
Uspekhi Matematicheskikh Nauk. 2024;79(6):159-160
pages 159-160 views
Subsystems of orthogonal systems and the recovery of sparse signals in the presence of random losses
Iosevich A., Kashin B.S., Limonova I.V., Mayeli A.
Uspekhi Matematicheskikh Nauk. 2024;79(6):161-162
pages 161-162 views
Mixing in stochastic dynamical systems with stationary noise
Kuksin S.B., Shirikyan A.R.
Uspekhi Matematicheskikh Nauk. 2024;79(6):163-164
pages 163-164 views
Distribution of zeros of polynomials of multiple discrete orthogonality in the Angelesco case
Lysov V.G.
Uspekhi Matematicheskikh Nauk. 2024;79(6):165-166
pages 165-166 views
On the description of periodic elements of elliptic fields defined by polynomials of degree three
Platonov V.P.
Uspekhi Matematicheskikh Nauk. 2024;79(6):167-168
pages 167-168 views
On the variety of flexes of plane cubics
Popov V.L.
Uspekhi Matematicheskikh Nauk. 2024;79(6):169-170
pages 169-170 views

Mathematical Life

On the 90th anniversary of the birth of Vladimir Nikolaevich Sudakov (1934–2016)
Bobkov S.G., Bogachev V.I., Zaporozhets D.N., Ibragimov I.A.
Uspekhi Matematicheskikh Nauk. 2024;79(6):171-178
pages 171-178 views
On the 90th birthday of Nina Nikolaevna Uraltseva
Apushkinskaya D.E., Arkhipova A.A., Babich V.M., Weiss G.S., Ibragimov I.A., Kislyakov S.V., Krylov N.V., Laptev A.A., Nazarov A.I., Seregin G.A., Suslina T.A., Shahgholian H.
Uspekhi Matematicheskikh Nauk. 2024;79(6):179-192
pages 179-192 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».