Uniform attractors for measure-driven quintic wave equations
- Authors: Savostianov A.K.1, Zelik S.V.2,3,4
-
Affiliations:
- Uppsala University
- University of Surrey
- Lanzhou University
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Issue: Vol 75, No 2 (2020)
- Pages: 61-132
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133596
- DOI: https://doi.org/10.4213/rm9932
- ID: 133596
Cite item
Abstract
About the authors
Anton Konstantinovich Savostianov
Uppsala University
Email: anton.savostianov@math.uu.se
Sergey Vital'evich Zelik
University of Surrey; Lanzhou University; Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Email: s.zelik@surrey.ac.uk
Doctor of physico-mathematical sciences, Senior Researcher
References
- J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866
- А. В. Бабин, М. И. Вишик, Аттракторы эволюционных уравнений, Наука, M., 1989, 296 с.
- H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., 343, Springer, Heidelberg, 2011, xvi+523 pp.
- H. Bahouri, P. Gerard, “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math., 121:1 (1999), 131–175
- J. Ball, “Global attractors for damped semilinear wave equations”, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 31–52
- M. D. Blair, H. F. Smith, C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincare Anal. Non Lineaire, 26:5 (2009), 1817–1829
- В. И. Богачев, Основы теории меры, т. 1, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 544 с.
- В. И. Богачев, Основы теории меры, т. 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 576 с.
- N. Burq, G. Lebeau, F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845
- N. Burq, F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742
- V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964
- V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp.
- J. Diestel, J. J. Uhl, Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977, xiii+322 pp.
- E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062
- M. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509
- J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp.
- E. Hewitt, “Integration by parts for Stieltjes integrals”, Amer. Math. Monthly, 67:5 (1960), 419–423
- V. Kalantarov, A. Savostianov, S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincare, 17:9 (2016), 2555–2584
- Л. В. Капитанский, “Задача Коши для полулинейного волнового уравнения. I”, Краевые задачи математической физики и смежные вопросы теории функций. 19, Зап. науч. сем. ЛОМИ, 163, Изд-во “Наука”, Ленинград. отд., Л., 1987, 76–104
- Л. В. Капитанский, “Задача Коши для полулинейного волнового уравнения. II”, Краевые задачи математической физики и смежные вопросы теории функций. 21, Зап. науч. сем. ЛОМИ, 182, Изд-во “Наука”, Ленинград. отд., Л., 1990, 38–85
- L. Kapitanski, “Global and unique weak solutions of nonlinear wave equations”, Math. Res. Lett., 1:2 (1994), 211–223
- L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323
- А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, Изд. 4-е, перераб., Наука, М., 1976, 544 с.
- S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp.
- О. А. Ладыженская, “Об аттракторах нелинейных эволюционных задач с диссипацией”, Краевые задачи математической физики и смежные вопросы теории функций. 18, Зап. науч. сем. ЛОМИ, 152, Изд-во “Наука”, Ленинград. отд., Л., 1986, 72–85
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
- S. Lu, H. Wu, C. Zhong, “Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces”, Discrete Contin. Dyn. Syst., 13:3 (2005), 701–719
- T.-W. Ma, Banach–Hilbert spaces, vector measures and group representations, World Sci. Publ., River Edge, NJ, 2002, xiv+606 pp.
- A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Elsevier/North-Holland, Amsterdam, 2008, 103–200
- I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393
- I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531
- A. Savostianov, “Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains”, Adv. Differential Equations, 20:5-6 (2015), 495–530
- J. Shatah, M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518
- J. Shatah, M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Internat. Math. Res. Notices, 1994:7 (1994), 303–309
- C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008, x+205 pp.
- W. A. Strauss, Nonlinear wave equations, CBMS Regional Conf. Ser. in Math., 73, Amer. Math. Soc., Providence, RI, 1989, x+91 pp.
- M. Struwe, “Globally regular solutions to the $u^5$ Klein–Gordon equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15:3 (1988), 495–513
- T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conf. Ser. in Math., 106, Amer. Math. Soc., Providence, RI, 2006, xvi+373 pp.
- T. Tao, “Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions”, Dyn. Partial Differ. Equ., 3:2 (2006), 93–110
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp.
- Х. Трибель, Теория интерполяции, функциональные пространства, дифференциальные операторы, Мир, М., 1980, 664 с.
- М. И. Вишик, С. В. Зелик, “Траекторный аттрактор нелинейной эллиптической системы в цилиндрической области”, Матем. сб., 187:12 (1996), 21–56
- S. Zelik, “Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent”, Commun. Pure Appl. Anal., 3:4 (2004), 921–934
- S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392
- S. Zelik, “Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces”, Discrete Contin. Dyn. Syst. Ser. B, 20:3 (2015), 781–810
Supplementary files
