Uniform attractors for measure-driven quintic wave equations
- Authors: Savostianov A.K.1, Zelik S.V.2,3,4
-
Affiliations:
- Uppsala University
- University of Surrey
- Lanzhou University
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Issue: Vol 75, No 2 (2020)
- Pages: 61-132
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133596
- DOI: https://doi.org/10.4213/rm9932
- ID: 133596
Cite item
Abstract
This is a detailed study of damped quintic wave equations with non-regular and non-autonomous external forces which are measures in time. In the 3D case with periodic boundary conditions, uniform energy-to-Strichartz estimates are established for the solutions, the existence of uniform attractors in a weak or strong topology in the energy phase space is proved, and their additional regularity is studied along with the possibility of representing them as the union of all complete bounded trajectories.Bibliography: 45 titles.
About the authors
Anton Konstantinovich Savostianov
Uppsala University
Email: anton.savostianov@math.uu.se
Sergey Vital'evich Zelik
University of Surrey; Lanzhou University; Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Email: s.zelik@surrey.ac.uk
Doctor of physico-mathematical sciences, Senior Researcher
References
- J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866
- А. В. Бабин, М. И. Вишик, Аттракторы эволюционных уравнений, Наука, M., 1989, 296 с.
- H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., 343, Springer, Heidelberg, 2011, xvi+523 pp.
- H. Bahouri, P. Gerard, “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math., 121:1 (1999), 131–175
- J. Ball, “Global attractors for damped semilinear wave equations”, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 31–52
- M. D. Blair, H. F. Smith, C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincare Anal. Non Lineaire, 26:5 (2009), 1817–1829
- В. И. Богачев, Основы теории меры, т. 1, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 544 с.
- В. И. Богачев, Основы теории меры, т. 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 576 с.
- N. Burq, G. Lebeau, F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845
- N. Burq, F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742
- V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964
- V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp.
- J. Diestel, J. J. Uhl, Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977, xiii+322 pp.
- E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062
- M. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509
- J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp.
- E. Hewitt, “Integration by parts for Stieltjes integrals”, Amer. Math. Monthly, 67:5 (1960), 419–423
- V. Kalantarov, A. Savostianov, S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincare, 17:9 (2016), 2555–2584
- Л. В. Капитанский, “Задача Коши для полулинейного волнового уравнения. I”, Краевые задачи математической физики и смежные вопросы теории функций. 19, Зап. науч. сем. ЛОМИ, 163, Изд-во “Наука”, Ленинград. отд., Л., 1987, 76–104
- Л. В. Капитанский, “Задача Коши для полулинейного волнового уравнения. II”, Краевые задачи математической физики и смежные вопросы теории функций. 21, Зап. науч. сем. ЛОМИ, 182, Изд-во “Наука”, Ленинград. отд., Л., 1990, 38–85
- L. Kapitanski, “Global and unique weak solutions of nonlinear wave equations”, Math. Res. Lett., 1:2 (1994), 211–223
- L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323
- А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, Изд. 4-е, перераб., Наука, М., 1976, 544 с.
- S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp.
- О. А. Ладыженская, “Об аттракторах нелинейных эволюционных задач с диссипацией”, Краевые задачи математической физики и смежные вопросы теории функций. 18, Зап. науч. сем. ЛОМИ, 152, Изд-во “Наука”, Ленинград. отд., Л., 1986, 72–85
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
- S. Lu, H. Wu, C. Zhong, “Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces”, Discrete Contin. Dyn. Syst., 13:3 (2005), 701–719
- T.-W. Ma, Banach–Hilbert spaces, vector measures and group representations, World Sci. Publ., River Edge, NJ, 2002, xiv+606 pp.
- A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Elsevier/North-Holland, Amsterdam, 2008, 103–200
- I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393
- I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531
- A. Savostianov, “Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains”, Adv. Differential Equations, 20:5-6 (2015), 495–530
- J. Shatah, M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518
- J. Shatah, M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Internat. Math. Res. Notices, 1994:7 (1994), 303–309
- C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008, x+205 pp.
- W. A. Strauss, Nonlinear wave equations, CBMS Regional Conf. Ser. in Math., 73, Amer. Math. Soc., Providence, RI, 1989, x+91 pp.
- M. Struwe, “Globally regular solutions to the $u^5$ Klein–Gordon equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15:3 (1988), 495–513
- T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conf. Ser. in Math., 106, Amer. Math. Soc., Providence, RI, 2006, xvi+373 pp.
- T. Tao, “Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions”, Dyn. Partial Differ. Equ., 3:2 (2006), 93–110
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp.
- Х. Трибель, Теория интерполяции, функциональные пространства, дифференциальные операторы, Мир, М., 1980, 664 с.
- М. И. Вишик, С. В. Зелик, “Траекторный аттрактор нелинейной эллиптической системы в цилиндрической области”, Матем. сб., 187:12 (1996), 21–56
- S. Zelik, “Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent”, Commun. Pure Appl. Anal., 3:4 (2004), 921–934
- S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392
- S. Zelik, “Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces”, Discrete Contin. Dyn. Syst. Ser. B, 20:3 (2015), 781–810
Supplementary files
