Modeling of the Tonal Noise Characteristics in a Foil Flow by using Machine Learning


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A machine learning approach for prediction the characteristics of tonal noise formed in a foil flow is tested. Experimental data are used to construct and analyze the mathematical models of pressure amplitude regression and models of classification of regimes of high-level tonal noise coming from the dimensionless parameters of the flow. Different families of algorithms are considered: from linear models to artificial neural networks. It is shown that a gradient boosting model with a determination coefficient 95% is the most accurate for describing and predicting the spectral curves of acoustic pressure on the entire interval of values of amplitudes and characteristic frequencies.

Негізгі сөздер

Авторлар туралы

S. Abdurakipov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: s.s.abdurakipov@gmail.com
Ресей, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. Tokarev

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Ресей, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

K. Pervunin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Ресей, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

V. Dulin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Ресей, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019