Modeling of the Tonal Noise Characteristics in a Foil Flow by using Machine Learning


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A machine learning approach for prediction the characteristics of tonal noise formed in a foil flow is tested. Experimental data are used to construct and analyze the mathematical models of pressure amplitude regression and models of classification of regimes of high-level tonal noise coming from the dimensionless parameters of the flow. Different families of algorithms are considered: from linear models to artificial neural networks. It is shown that a gradient boosting model with a determination coefficient 95% is the most accurate for describing and predicting the spectral curves of acoustic pressure on the entire interval of values of amplitudes and characteristic frequencies.

About the authors

S. S. Abdurakipov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Author for correspondence.
Email: s.s.abdurakipov@gmail.com
Russian Federation, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. P. Tokarev

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Russian Federation, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

K. S. Pervunin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Russian Federation, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

V. M. Dulin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Russian Federation, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Allerton Press, Inc.