Modeling of the Tonal Noise Characteristics in a Foil Flow by using Machine Learning


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A machine learning approach for prediction the characteristics of tonal noise formed in a foil flow is tested. Experimental data are used to construct and analyze the mathematical models of pressure amplitude regression and models of classification of regimes of high-level tonal noise coming from the dimensionless parameters of the flow. Different families of algorithms are considered: from linear models to artificial neural networks. It is shown that a gradient boosting model with a determination coefficient 95% is the most accurate for describing and predicting the spectral curves of acoustic pressure on the entire interval of values of amplitudes and characteristic frequencies.

Sobre autores

S. Abdurakipov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Autor responsável pela correspondência
Email: s.s.abdurakipov@gmail.com
Rússia, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. Tokarev

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Rússia, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

K. Pervunin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Rússia, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

V. Dulin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
Rússia, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019