Modeling of the Tonal Noise Characteristics in a Foil Flow by using Machine Learning


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A machine learning approach for prediction the characteristics of tonal noise formed in a foil flow is tested. Experimental data are used to construct and analyze the mathematical models of pressure amplitude regression and models of classification of regimes of high-level tonal noise coming from the dimensionless parameters of the flow. Different families of algorithms are considered: from linear models to artificial neural networks. It is shown that a gradient boosting model with a determination coefficient 95% is the most accurate for describing and predicting the spectral curves of acoustic pressure on the entire interval of values of amplitudes and characteristic frequencies.

作者简介

S. Abdurakipov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: s.s.abdurakipov@gmail.com
俄罗斯联邦, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. Tokarev

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
俄罗斯联邦, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

K. Pervunin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
俄罗斯联邦, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

V. Dulin

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: s.s.abdurakipov@gmail.com
俄罗斯联邦, prosp. Akademika Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019