Resonances and discrete spectrum of the Laplace operator on hyperbolic surfaces

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spectrum of the Laplace operator
on a non-compact hyperbolic Riemann surface of finite measure is studied.
A sufficient condition for the discrete spectrum to be infinite is obtained.
It is shown that this condition holds near the point
$\Gamma_0(N)/H$, $N=p_1\cdots p_r$, of the Teichmüller space.

作者简介

Dmitrii Popov

Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology

Email: popov-kupavna@yandex.ru
Doctor of physico-mathematical sciences, Senior Researcher

参考

  1. P. Sarnak, “Spectra of hyperbolic surfaces”, Bull. Amer. Math. Soc. (N.S.), 40:4 (2003), 441–478
  2. H. Iwaniec, Introduction of the spectral theory of automorphic forms, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1995, xiv+247 pp.
  3. D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:3 (1976), 441–482
  4. D. A. Hejhal, The Selberg trace formula for $operatorname{PSL}(2,mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp.
  5. A. Selberg, Harmonic analysis, 2. Teil, Vorlesungsniederschrift, Göttingen, 1954, 33 pp.
  6. A. B. Venkov, “On essentially cuspidal noncongruence subgroups of $operatorname{PSL}(2,mathbb{R})$”, J. Funct. Anal., 92:1 (1990), 1–7
  7. S. A. Wolpert, “Disappearance of cusp forms in special families”, Ann. of Math. (2), 139:2 (1994), 239–291
  8. Wenzhi Luo, “Nonvanishing of $L$-values and the Weyl law”, Ann. of Math. (2), 154:2 (2001), 477–502
  9. A. Selberg, “Remarks on the distribution of poles of Eisenstein series”, Ferschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann Science Press of Israel, Jerusalem, 1990, 251–278
  10. W. Müller, “Spectral geometry and scattering theory for certain complete surfaces of finite volume”, Invent. Math., 109:2 (1992), 265–305
  11. R. S. Phillips, P. Sarnak, “On cups form for co-finite subgroups of $PSL(2,mathbb{R})$”, Invent. Math., 80:2 (1985), 339–364

补充文件

附件文件
动作
1. JATS XML

版权所有 © Popov D.A., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).